The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.
Dipeptidyl Peptidase (DPP) 4 and related dipeptidyl peptidases are emerging as current and potential therapeutic targets. DPP9 is an intracellular protease that is regulated by redox status and by SUMO1. DPP9 can influence antigen processing, epidermal growth factor (EGF)-mediated signaling and tumor biology. We made the first gene knock-in (gki) mouse with a serine to alanine point mutation at the DPP9 active site (S729A). Weaned heterozygote DPP9wt/S729A pups from 110 intercrosses were indistinguishable from wild-type littermates. No homozygote DPP9S729A/S729A weaned mice were detected. DPP9S729A/S729A homozygote embryos, which were morphologically indistinguishable from their wild-type littermate embryos at embryonic day (ED) 12.5 to ED 17.5, were born live but these neonates died within 8 to 24 hours of birth. All neonates suckled and contained milk spots and were of similar body weight. No gender differences were seen. No histological or DPP9 immunostaining pattern differences were seen between genotypes in embryos and neonates. Mouse embryonic fibroblasts (MEFs) from DPP9S729A/S729A ED13.5 embryos and neonate DPP9S729A/S729A mouse livers collected within 6 hours after birth had levels of DPP9 protein and DPP9-related proteases that were similar to wild-type but had less DPP9/DPP8-derived activity. These data confirmed the absence of DPP9 enzymatic activity due to the presence of the serine to alanine mutation and no compensation from related proteases. These novel findings suggest that DPP9 enzymatic activity is essential for early neonatal survival in mice.
Background: Intrahepatic expression of dipeptidyl peptidase-4 (DPP4), and circulating DPP4 (cDPP4) levels and its enzymatic activity, are increased in non-alcoholic fatty liver disease (NAFLD) and in type 2 diabetes mellitus and/or obesity. DPP4 has been implicated as a causative factor in NAFLD progression but few studies have examined associations between cDPP4 activity and NAFLD severity in humans. This study aimed to examine the relationship of cDPP4 activity with measures of liver disease severity in NAFLD in subjects with diabetes and/or obesity. Methods: cDPP4 was measured in 106 individuals with type 2 diabetes who had transient elastography (Cohort 1) and 145 individuals with morbid obesity who had liver biopsy (Cohort 2). Both cohorts had caspase-cleaved keratin-18 (ccK18) measured as a marker of apoptosis. Results: Natural log increases in cDPP4 activity were associated with increasing quartiles of ccK18 (Cohorts 1 and 2) and with median liver stiffness ≥10.3 kPa (Cohort 1) and significant fibrosis (F ≥ 2) on liver biopsy (Cohort 2). Conclusions: In diabetes and/or obesity, cDPP4 activity is associated with current apoptosis and liver fibrosis. Given the pathogenic mechanisms by which DPP4 may progress NAFLD, measurement of cDPP4 activity may have utility to predict disease progression and DPP4 inhibition may improve liver histology over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.