Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3%) surface samples were positive for SARS-CoV-2 RNA, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000) by quantitative microbial risk assessment, suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n = 33 unique surfaces per week) best predicted variation in city-level COVID-19 cases with a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces may be a useful tool to provide early warning of COVID-19 case trends.
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is perceived to be primarily transmitted via person-to-person contact through droplets produced while talking, coughing, and sneezing. Transmission may also occur through other routes, including contaminated surfaces; nevertheless, the role that surfaces have on the spread of the disease remains contested. Here, we use the Quantitative Microbial Risk Assessment framework to examine the risks of community transmission of SARS-CoV-2 through surfaces and to evaluate the effectiveness of hand and surface disinfection as potential interventions. Using conservative assumptions on input parameters of the model (e.g., dose−response relationship, ratio of genome copies to infective virus), the average of the median risks for single hand-to-surface contact followed by hand-to-face contact range from 1.6 × 10 −4 to 5.6 × 10 −9 for modeled prevalence rates of 0.2%−5%. For observed prevalence rates (0.2%, 1%), this corresponds to a low risk of infection (<10 −6 ). Hand disinfection substantially reduces risks of transmission independently of the disease's prevalence and contact frequency. In contrast, the effectiveness of surface disinfection is highly dependent on the prevalence and the frequency of contacts. The work supports the current perception that contaminated surfaces are not a primary mode of transmission of SARS-CoV-2 and affirms the benefits of making hand disinfectants widely available.
Understanding virus transfer between liquid and skin is necessary to estimate transmission during water-related activities. Here, we modeled virus transfer from liquid-to-skin and skin-to-liquid. We performed human subject studies using three bacteriophages as pathogenic virus surrogates: nonenveloped MS2 and Qβ and enveloped Φ6. Our study shows that transfer from liquid-to-skin is describable by a single model based on (1) virus concentration and (2) volume of liquid remaining on skin. Contact times (0.1-30 min), and virus species had little-to-no influence on virus transfer. Likewise, liquid conditions (pH 6-9, ionic strength 10-550 mM) had no influence on transfer as shown for MS2. The model accounts for both, virus adsorbed onto the skin, and virus in the liquid retained on skin. In comparison, virus transfer from skin-to-liquid was influenced by the wetness of the skin and by liquid type (water, saliva). 90 ± 19% of the virus inoculated on the skin are transferred to the water when the skin remains wet compared to 30 ± 17% when the skin is dry. The transfer from skin-to-liquid was 41% higher when the recipient liquid was water as compared with saliva. This study quantifies virus transfer between liquid and skin and guides risk assessments of water-related activities.
Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3 %) surface samples were positive for SARS-CoV-2, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000), suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n=33 unique surfaces per week) best predicted variation in city-level COVID-19 cases using a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces could be a useful tool to provide early warning of COVID-19 case trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.