Background: Besides biological factors, abdominal aortic aneurysm rupture is also caused by mechanical parameters, which are constantly affecting the wall’s tissue due to their abnormal values. The ability to evaluate these parameters could vastly improve the clinical treatment of patients with abdominal aortic aneurysms. The objective of this study was to develop and demonstrate a methodology to analyze the fluid dynamics that cause the wall stress distribution in abdominal aortic aneurysms, using accurate 3D geometry and a realistic, nonlinear, elastic biomechanical model using a computer-aided software. Methods: The geometry of the abdominal aortic aneurysm; was constructed on a 3D scale using computer-aided software SolidWorks (Dassault Systems SolidWorksCorp., Waltham MA). Due to the complex nature of the abdominal aortic aneurysm geometry, the physiological forces and constraints acting on the abdominal aortic aneurysm wall were measured by using a simulation setup using boundary conditions and initial conditions for different studies such as finite element analysis or computational fluid dynamics. Results: The flow pattern showed an increase velocity at the angular neck, followed by a stagnated flow inside the aneurysm sack. Furthermore, the wall shear stress analysis showed to focalized points of higher stress, the top and bottom of the aneurysm sack, where the flow collides against the wall. An increase of the viscosity showed no significant velocity changed but results in a slight increase in overall pressure and wall shear stress. Conclusions: Conducting computational fluid dynamics modeling of the abdominal aortic aneurysm using computer-aided software SolidWorks (Dassault Systems SolidWorksCorp., Waltham MA) proves to be an insightful approach for the clinical setting. The careful consideration of the biomechanics of the abdominal aortic aneurysm may lead to an improved, case-specific prediction of the abdominal aortic aneurysm rupture potential, which could significantly improve the clinical management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.