Biomedical research is increasingly data rich, with studies comprising ever growing numbers of features. The larger a study, the higher the likelihood that a substantial portion of the features may be redundant and/or contain contamination (outlying values). This poses serious challenges, which are exacerbated in cases where the sample sizes are relatively small. Effective and efficient approaches to perform sparse estimation in the presence of outliers are critical for these studies, and have received considerable attention in the last decade. We contribute to this area considering high‐dimensional regressions contaminated by multiple mean‐shift outliers affecting both the response and the design matrix. We develop a general framework and use mixed‐integer programming to simultaneously perform feature selection and outlier detection with provably optimal guarantees. We prove theoretical properties for our approach, that is, a necessary and sufficient condition for the robustly strong oracle property, where the number of features can increase exponentially with the sample size; the optimal estimation of parameters; and the breakdown point of the resulting estimates. Moreover, we provide computationally efficient procedures to tune integer constraints and warm‐start the algorithm. We show the superior performance of our proposal compared to existing heuristic methods through simulations and use it to study the relationships between childhood obesity and the human microbiome.
Sparse estimation methods capable of tolerating outliers have been broadly investigated in the last decade. We contribute to this research considering high-dimensional regression problems contaminated by multiple mean-shift outliers which affect both the response and the design matrix. We develop a general framework for this class of problems and propose the use of mixed-integer programming to simultaneously perform feature selection and outlier detection with provably optimal guarantees. We characterize the theoretical properties of our approach, i.e. a necessary and sufficient condition for the robustly strong oracle property, which allows the number of features to exponentially increase with the sample size; the optimal estimation of the parameters; and the breakdown point of the resulting estimates. Moreover, we provide computationally efficient procedures to tune integer constraints and to warm-start the algorithm. We show the superior performance of our proposal compared to existing heuristic methods through numerical simulations and an application investigating the relationships between the human microbiome and childhood obesity.
Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.