BackgroundPrevious reports associated 2 mutant SOD1 alleles (SOD1:c.118A and SOD1:c.52T) with degenerative myelopathy in 6 canine breeds. The distribution of these alleles in other breeds has not been reported.ObjectiveTo describe the distribution of SOD1:c.118A and SOD1:c.52T in 222 breeds.AnimalsDNA from 33,747 dogs was genotyped at SOD1:c.118, SOD1:c.52, or both. Spinal cord sections from 249 of these dogs were examined.MethodsRetrospective analysis of 35,359 previously determined genotypes at SOD1:c.118G>A or SOD1:c.52A>T and prospective survey to update the clinical status of a subset of dogs from which samples were obtained with a relatively low ascertainment bias.ResultsThe SOD1:c.118A allele was found in cross-bred dogs and in 124 different canine breeds whereas the SOD1:c.52T allele was only found in Bernese Mountain Dogs. Most of the dogs with histopathologically confirmed degenerative myelopathy were SOD1:c.118A homozygotes, but 8 dogs with histopathologically confirmed degenerative myelopathy were SOD1:c.118A/G heterozygotes and had no other sequence variants in their SOD1 amino acid coding regions. The updated clinical conditions of dogs from which samples were obtained with a relatively low ascertainment bias suggest that SOD1:c.118A homozygotes are at a much higher risk of developing degenerative myelopathy than are SOD1:c.118A/G heterozygotes.Conclusions and Clinical ImportanceWe conclude that the SOD1:c.118A allele is widespread and common among privately owned dogs whereas the SOD1:c.52T allele is rare and appears to be limited to Bernese Mountain Dogs. We also conclude that breeding to avoid the production of SOD1:c.118A homozygotes is a rational strategy.
We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.
Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10 −5), and was associated with increased probability of developing DM (P = 4.8 × 10 −6 ) and earlier onset of disease (P = 1.7 × 10 −5 ). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds.degenerative myelopathy | amyotrophic lateral sclerosis | ALS | SOD1 | SP110
BackgroundNeuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs.ObjectiveCharacterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause.AnimalsTissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped.MethodsTissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping.ResultsThe accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote.Conclusions and Clinical ImportanceThe homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.