Surveillance is critical for the prevention and control of mosquito-borne arboviruses. Detection of elevated or emergent virus activity serves as a warning system to implement appropriate actions to reduce outbreaks. Traditionally, surveillance of arboviruses has relied on the detection of specific antibodies in sentinel animals and/or detection of viruses in pools of mosquitoes collected using a variety of sampling methods. These methods, although immensely useful, have limitations, including the need for a cold chain for sample transport, cross-reactivity between related viruses in serological assays, the requirement for specialized equipment or infrastructure, and overall expense. Advances have recently been made on developing new strategies for arbovirus surveillance. These strategies include sugar-based surveillance, whereby mosquitoes are collected in purpose-built traps and allowed to expectorate on nucleic acid preservation cards which are submitted for virus detection. New diagnostic approaches, such as next-generation sequencing, have the potential to expand the genetic information obtained from samples and aid in virus discovery. Here, we review the advancement of arbovirus surveillance systems over the past decade. Some of the novel approaches presented here have already been validated and are currently being integrated into surveillance programs. Other strategies are still at the experimental stage, and their feasibility in the field is yet to be evaluated.
BackgroundEmerging and re-emerging arthropod-borne viruses (arboviruses) cause human and animal disease globally. Field and laboratory investigation of mosquito-borne arboviruses requires analysis of mosquito samples, either individually, in pools, or a body component, or secretion such as saliva. We assessed the applicability of mosquito excreta as a sample type that could be utilized during studies of Ross River and West Nile viruses, which could be applied to the study of other arboviruses.Methodology/Principal findingsMosquitoes were fed separate blood meals spiked with Ross River virus and West Nile virus. Excreta was collected daily by swabbing the bottom of containers containing batches and individual mosquitoes at different time points. The samples were analyzed by real-time RT-PCR or cell culture enzyme immunoassay. Viral RNA in excreta from batches of mosquitoes was detected continuously from day 2 to day 15 post feeding. Viral RNA was detected in excreta from at least one individual mosquito at all timepoints, with 64% and 27% of samples positive for RRV and WNV, respectively. Excretion of viral RNA was correlated with viral dissemination in the mosquito. The proportion of positive excreta samples was higher than the proportion of positive saliva samples, suggesting that excreta offers an attractive sample for analysis and could be used as an indicator of potential transmission. Importantly, only low levels of infectious virus were detected by cell culture, suggesting a relatively low risk to personnel handling mosquito excreta.Conclusions/SignificanceMosquito excreta is easily collected and provides a simple and efficient method for assessing viral dissemination, with applications ranging from vector competence experiments to complementing sugar-based arbovirus surveillance in the field, or potentially as a sample system for virus discovery.
BackgroundGuatemala is the country with the largest swine production in Central America; however, evidence of influenza A virus (IAV) in pigs has not been clearly delineated.ObjectivesIn this study, we analyzed the presence and spatial distribution of IAV in commercial and backyard swine populations.MethodsSamples from two nationwide surveys conducted in 2010 and 2011 were tested using virological (rRT‐PCR and virus isolation) and serological (ELISA and hemagglutination inhibition) assays to detect IAV.ResultsInfluenza A virus was detected in 15.7% of the sampled pigs (30.6% of herds) in 2010 and in 11.7% (24.2% of herds) in 2011. The percentage of seropositive pigs was 10.6% (16.1% of herds) and 1.4% (3.1% of herds) for each year, respectively. Three pandemic H1N1 and one seasonal human‐like H3N2 viruses were isolated. Antibodies against viruses from different genetic clusters were detected. No reassortant strains with swine viruses were detected. The H3N2 virus was closely related to human viruses that circulated in Central America in 2010, distinct to the most recent human seasonal vaccine lineages. Spatial clusters of rRT‐PCR positive herds were detected each year by scan statistics.ConclusionsOur results demonstrate circulation of IAV throughout Guatemala and identify commercial farms, animal health status, and age as potential risk factors associated with IAV infection and exposure. Detection of human‐origin viruses in pigs suggests a role for humans in the molecular epidemiology of IAV in swine in Guatemala and evidences gaps in local animal and human surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.