Hardware accelerators for cryptographic algorithms are ubiquitously deployed in nowadays consumer and industrial products. Unfortunately, the HW implementations of such algorithms often suffer from vulnerabilities that expose systems to a number of attacks, among which differential fault analysis (DFA). It is therefore crucial to protect cryptographic circuits against such attacks in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting circuits implementing the RSA algorithm against DFA. The proposed solution borrows residue checking from the traditional fault tolerance and applies it to RSA circuits in order to first detect the occurrence a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the proposed solution detects the 100% of the possible fault attacks while leading to a 2.85% area overhead, a 16.67% power consumption increase and with no operating frequency decrease.
Hardware acceleration circuits for cryptographic algorithms are largely deployed in a wide range of products. The HW implementations of such algorithms often suffer from a number of vulnerabilities that expose systems to several attacks, e.g., differential fault analysis (DFA). The challenge for designers is to protect cryptographic accelerators in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting hardware accelerators implementing AES and SHA-2 (which are two widely used NIST standards) against DFA. The proposed technique exploits partial redundancy to first detect the occurrence of a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the overhead introduced is 8.32% for AES and 3.88% for SHA-2 in terms of area, 0.81% for AES and 12.31% for SHA-2 in terms of power with no working frequency reduction. Moreover, a comparative analysis showed that our proposal outperforms the most recent related countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.