Peripheral interactions between nociceptive fibers and mast cells contribute to inflammatory pain, but little is known about mechanisms mediating neuro-immune communication. Here we show that metalloproteinase MT5-MMP (MMP-24) is an essential mediator of peripheral thermal nociception and inflammatory hyperalgesia. We report that MT5-MMP is expressed by CGRP-containing peptidergic nociceptors in dorsal root ganglia and that Mmp24-deficient mice display enhanced sensitivity to noxious thermal stimuli under basal conditions. Consistently, mutant peptidergic sensory neurons hyperinnervate the skin, a phenotype that correlates with changes in the regulated cleavage of the cell-cell adhesion molecule N-cadherin. In contrast to basal nociception, Mmp24 ؊/؊ mice do not develop thermal hyperalgesia during inflammation, a phenotype that appears associated with alterations in N-cadherin-mediated cell-cell interactions between mast cells and sensory fibers. Collectively, our findings demonstrate an essential role of MT5-MMP in the development of dermal neuro-immune synapses and suggest that this metalloproteinase may be a target for pain control.inflammation ͉ mast cell ͉ N-cadherin
Endothelin receptors have been involved in inflammatory, neuropathic and tumoral pain. In the case of inflammatory hyperalgesia, some previous papers have pointed towards the involvement of ETB receptors, although the stimulation of ETA receptors seems to participate in the development of the inflammatory reaction. We have studied the effect of ETA and ETB receptor antagonists in the thermal and mechanical hyperalgesia induced in a model of acute (induced by carrageenan) and chronic (induced by complete Freund's adjuvant, CFA) inflammation in mice. The i.pl. administration of the selective ETA antagonist BQ-123 (1-10 nmol) antagonized the thermal hyperalgesia detected by the unilateral hot plate test, observed in both inflammatory models, whereas the i.pl. administration of the ETB selective antagonist BQ-788 (17.7 nmol) failed to modify this. In contrast, both BQ-123 (3-17.7 nmol) and BQ-788 (3-17.7 nmol) antagonized the mechanical hyperalgesia, as assessed by the Randall-Selitto test in carrageenan- and CFA-treated mice. Both BQ-123 and BQ-788 were able to antagonize the mechanical hyperalgesia induced by ET-1 (200 pmol; i.pl.) in the same dose range. Thus, ETA receptors are involved in both thermal and mechanical hyperalgesia whereas ETB receptors are only involved in mechanical hyperalgesia in these inflammatory models. In conclusion, the role of ETB receptors in inflammatory pain is further supported and new insights into the participation of ETA receptors in inflammatory hyperalgesia are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.