Objective: Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology in which inflammatory pathology involves T cell activation and the CD28 costimulatory molecule involved in T cell presentation. The gene includes the CD28 IVS3 +17T/C polymorphism that could be associated with susceptibility to RA whereas the soluble concentrations of CD28 (sCD28) could be related to clinical activity. Methods: We investigated the CD28 IVS3 +17T/C polymorphism in 200 RA patients and 200 healthy subjects (HS). Furthermore, we quantified the sCD28 concentrations in 77 samples of each group. We applied indexes focused to determine the activity and disability (DAS28 and Spanish HAQ-DI, respectively) in RA patients. Methods: We investigated the CD28 IVS3 +17T/C polymorphism in 200 RA patients and 200 healthy subjects (HS). Furthermore, we quantified the sCD28 concentrations in 77 samples of each group. We applied indexes focused to determine the activity and disability (DAS28 and Spanish HAQ-DI, respectively) in RA patients. Results: RA patients had significantly higher frequencies of the CD28 T allele compared to HS (p = 0.032 OR = 1.59, C.I. 1.02–2.49). In addition, the IVS3 +17 T/T genotype frequency was also increased in RA vs. HS (p = 0.026). The RA patients showed higher sCD28 serum levels than HS (p = 0.001). Carriers of the T/T genotype in RA patients showed higher sCD28 levels than C/C carriers (p = 0.047). In addition, a correlation between sCD28 and Spanish HAQ-DI (correlation, 0.272; p = 0.016), was found. Conclusion: The T allele in CD28 IVS3 +17T/C polymorphism is associated with a susceptibility to RA in Western Mexico. In addition, increased sCD28 levels are related to T/T genotype in RA patients.
Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone’s modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.
BackgroundNKG2D, an activating immunoreceptor, is primarily restricted to NK cells and CD8+ T cells. The existence of an atypical cytotoxic CD4+NKG2D+ T cell population has also been found in patients with autoimmune dysfunctions. Nonetheless, contradictory evidence has categorized this population with a regulatory rather than cytotoxic role in other situations. These confounding data have led to the proposal that two distinct CD4+NKG2D+ T cell subsets might exist. The immune response elicited in cervical cancer has been characterized by apparent contradictions concerning the role that T cells, in particular T-helper cells, might be playing in the control of the tumor growth. Interestingly, we recently reported a substantial increase in the frequency of CD4+NKG2D+ T cells in patients with cervical intraepithelial neoplasia grade-1. However, whether this particular population is also found in patients with more advanced cervical lesions or whether they express a distinctive phenotype remains still to be clarified. In this urgent study, we focused our attention on the immunophenotypic characterization of CD4+NKG2D+ T cells in patients with well-established cervical carcinoma and revealed the existence of at least two separate CD4+NKG2D+ T cell subsets defined by the co-expression or absence of CD28.ResultsPatients with diagnosis of invasive cervical carcinoma were enrolled in the study. A group of healthy individuals was also included. Multicolor flow cytometry was used for exploration of TCR alpha/beta, CD28, CD158b, CD45RO, HLA-DR, CD161, and CD107a. A Luminex-based cytokine kit was used to quantify the levels of pro- and anti-inflammatory cytokines. We found an increased percentage of CD4+NKG2D+ T cells in patients with cervical cancer when compared with controls. Accordingly with an increase of CD4+NKG2D+ T cells, we found decreased CD28 expression. The activating or degranulation markers HLA-DR, CD161, and CD107a were heterogeneously expressed. The levels of IL-1beta, IL-2, TNF-alpha, and IL-10 were negatively correlated with the percentages of CD4+NKG2D+ T cells in patients with cervical carcinoma.ConclusionsTaken together, our results reveal the existence of two separate CD4+NKG2D+ T cell subsets defined by the co-expression or absence of CD28, the latter more likely to be present in patients with cervical cancer.
Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen agent causing coronavirus disease (COVID)-19, which was declared a global pandemic in 2020. The spike protein of this virus and the angiotensin-converter enzyme (ACE)-2 in host cells in humans play a vital role in infection and in COVID-19 pathogenesis. Estradiol is known to modulate the actions of immune cells, and, therefore, the antiviral mechanisms of these cells could also be modified by this hormone stimulus. Even though estradiol is not considered a protective factor, evidence shows that women with high levels of this hormone have a lower risk of developing severe symptoms and an even a lower incidence of death. Understanding the mechanism of action of estradiol with regard to viral infections and COVID-19 is essential for the improvement of therapeutic strategies. This review aims to describe the effects that estradiol exerts on immune cells during viral infections and COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.