Giardia duodenalis is a worldwide protozoa known causing diarrhea in all vertebrates, humans among these. Homologous recombination is a mechanism that provides genomic stability. Two putative recombinases were identified in G. duodenalis genome: GdDMC1A and GdDMC1B. In this article, we describe the identification of conserved domains in GdDMC1A and GdDMC1B, such as: DNA binding domains (Helix-turn-helix motif, loops 1 and 2) and an ATPcap and Walker A and B motifs associated with ATP binding and hydrolysis, phylogenetic analyses among assemblages and three-dimensional structure modeling of these recombinases using bioinformatics tools. Also, experimental data is described about LD50 determination for ionizing radiation in trophozoites of G. duodenalis. Additionally, as recombinases, GdDMC1A and GdDMC1B were used to rescue a defective Saccharomyces cerevisiae Δ rad51 strain under genotoxic conditions and data is described.The data described here are related to the research article entitled “Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in Giardia duodenalis trophozoites” (Torres-Huerta et al.,) [1].
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease characterized by severe reproductive failure in sows, acute respiratory disorders in growing pigs, and high mortality in piglets. The causative agent of this syndrome is the PRRS virus (PRRSV), an RNA virus belonging to the Arteriviridae family. To date, several quantitative approaches of proteomics have been applied to analyze the gene expression profiles during PRRSV infection in PAMs and MARC-145 cells, and few proteins have been consistent among independent studies, probably due to the differences in the levels of virulence of different PRRSV strains used and/or due to analytical conditions. In this study, total proteins isolated from noninfected and infected MARC-145 cells with a Mexican PRRSV strain were relatively quantified using label-free based DIA approach in combination with ion-mobility separation. As a result, 1456 quantified proteins were found to be shared between the control and infected samples. Afterward, these proteins were filtered, and 699 of them were considered without change. Also, 17 proteins were up-regulated and 19 proteins were down-regulated during the PRSSV infection. Bioinformatic analysis revealed that many of the differentially expressed proteins are involved in processes like antigen processing, presentation of antigens, response to viruses, response to IFNs, and innate immune response, among others. The present work is the first one which provides a detailed proteomic analysis through label-free based DIA approach in MARC-145 cells during the infection with a Mexican PRRSV strain.
Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification kits. Thus, selecting a method will depend mostly of what is available in the laboratory. The electroelution procedure allows one to purify very clean DNA to be used in a large number of applications (sequencing, radiolabeling, enzymatic restriction, enzymatic modification, cloning etc). This procedure consists in placing DNA band-containing agarose or acrylamide slices into sample wells of the electroeluter, then applying current will make the DNA fragment to leave the agarose and thus be trapped in a cushion salt to be recovered later by ethanol precipitation. Video LinkThe video component of this article can be found at http://www.jove.com/video/2136/ Protocol 1. In order to select DNA fragments of interest to be purified, these should be resolved in agarose or acrylamide gels gel stained with ethidium bromide by electrophoresis using 0.5X TBE buffer (Tris borate, EDTA) at 120 volts for 1 hour. For this, ~ 700 ng of plasmid pProExGdMre11S (6000-bp) previously digested with NdeI and HindIII was used to release a 900-bp fragment (560 ng of plasmid and 84 ng of fragment). 2. The electroeluter tank (Figure 1) should be filled with 0.5X TBE equally distributed in each side of the mid plateau taking care of not spill it onto the mid plateau. 3. The selected band (or bands) is cut out of the gel, and placed in sample chamber as close as possible to the V channel (one slice per well).Running buffer should be added to each chamber; just enough to cover the gel slice. 4. Each V channel used must be flushed with a Pasteur pipette to eliminate any air bubble trapped. 5. Then 100 ul of 10 M NH 4 acetate (to facilitate visualization a small amount of bromophenol blue is added, just enough to color it) are gently added inside the V channel. 6. The lid should be closed gently to prevent any resuspension of the high salt cushion. 7. Electroelution is begun at 100 volts for 25 minutes. 8. When electrolution is completed, 400 ul are removed from V-channel, and placed in a microfuge tube to be precipitated with 2 volumes of cold ethanol and glycogen (recommended to improve DNA recovery) at 4 ° C for 1 hour or overnight. 9. Centrifuge for 20 minutes, remove supernatant and wash with 70% ethanol. 10. Dry tube and quantify DNA at OD 260 nm. 11. The recovery obtained was 75% (63 ng recovered when 84 ng were placed on the V-channel).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.