As compared to other aquatic organism groups, relatively few studies have been conducted so far evaluating the toxicity of pesticides to amphibians. This may at least partly be due to the fact that regulations for registering pesticides usually do not require testing amphibians. The sensitivity of amphibians is generally considered to be covered by that based on toxicity tests with other aquatic organisms (e.g. fish) although the impact of a pesticide on amphibians may be very different. In the present study, acute and chronic laboratory tests were conducted to evaluate the acute and chronic toxicity of abamectin (as Vertimec(®) 18EC) to bullfrog (Lithobates catesbeianus) tadpoles. Acute tests were conducted at two tadpole stages (Gosner stage 21G and 25G) and avoidance tests were also conducted with stage Gosner stage 21G tadpoles. Calculated acute toxicity values were greater than those reported for standard fish test species, hence supporting the use of fish toxicity data as surrogates for amphibians in acute risk assessments. Given the limited number and extent of available amphibian toxicity studies, however, research needs to increase our understanding of pesticide toxicity to amphibians are discussed.
Concerns have been raised in recent years on the potential risks related with pesticide mixtures that are likely to be present in agricultural edge-of-field waterbodies. Despite the high use of pesticides in tropical countries like Brazil, studies evaluating pesticide mixtures are especially scarce in the tropics. The insecticide abamectin and the fungicide difenoconazole are the main pesticides intensively used in Brazilian strawberry crop and are hence likely to occur simultaneously. The aim of the present study was therefore to evaluate the toxicity of abamectin, difenoconazole and their mixture to the tropical fish Danio rerio. Laboratory toxicity tests with the individual pesticides indicated 48 h-LC values of 59 μg L for abamectin and 1.4 mg L for difenoconazole. Mixtures of the two pesticides revealed a synergistic deviation of the independent action model. Implications of study findings for the aquatic risk assessment of pesticide mixtures, especially in tropical countries and indications for future research are discussed.
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1 mL L(-1). The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.