This mixed research analyzes the use of the Collaborative Wall to improve the teaching-learning conditions in the Bachelor of Visual Arts considering data science and machine learning (linear regression). The sample is made up of 46 students who took the Geometric Representation Systems course at the National Autonomous University of Mexico (UNAM) during the 2019 school year. The Collaborative Wall is a web application that facilitates the organization and dissemination of ideas through the use of images and text. In the classroom, the students formed teams and used mobile devices to access this web application. The results of machine learning indicate that the organization of ideas in the Collaborative Wall positively influences the participation of students, motivation and learning process. Data science identifies 3 predictive models about the use of this web application in the educational field. Also, the Collaborative Wall facilitates the learning process in the classroom through the comparison and discussion of information. Finally, technological advances allow organizing creative activities that favor the active role of students.
El virus SARS-CoV-2 ha provocado que las universidades busquen nuevas alternativas tecnológicas con el propósito de mejorar la enseñanza y el aprendizaje bajo la modalidad a distancia. Esta investigación cuantitativa y cualitativa analiza la percepción de los educadores sobre los juegos web y dispositivos móviles durante la pandemia COVID-19 considerando la técnica aprendizaje automático y la técnica árbol de decisión (ciencia de datos). Los participantes son 60 docentes de educación superior que impartieron cursos en la Universidad Nacional Autónoma de México en el año 2021 y tomaron el Diplomado “Innovación en la Docencia Universitaria 2021”. La técnica aprendizaje automático indica que el uso de los juegos web y dispositivos móviles influyen positivamente la labor docente y participación de los estudiantes durante el proceso de enseñanza-aprendizaje. Además, la ciencia de datos establece 4 modelos predictivos sobre estas herramientas tecnológicas a través de la técnica árbol de decisión. Por último, los juegos web y dispositivos móviles permiten la creación de nuevos espacios virtuales que favorecen la enseñanza bajo la modalidad a distancia y facilitan el aprendizaje desde cualquier lugar.
Technological advances such as Massive Open Online Courses (MOOCs) and Information and Communication Technologies (ICT) allow the construction of new spaces where students consult the information at any time, take the online exams and communicate with the participants of the educational process from anywhere. This quantitative research analyzes the perception of the teachers about the organization of the school activities in MOOCs and use of ICT considering machine learning and decision tree techniques (data science). The participants are 122 teachers (58 men and 64 women) from the National Autonomous University of Mexico who took the "Innovation in University Teaching 2020" Diploma. The academic degree of these educators is Bachelor (n = 35, 28.69%), Specialty (n = 4, 3.28%), Master (n = 58, 47.54%) and Doctorate (n = 25, 20.49%). The results of machine learning (linear regressions) indicate that the organization of the school activities in MOOCs positively influences the motivation, participation and learning of the students. Data science identifies 3 predictive models about MOOCs and ICT through the decision tree technique. According to the teachers of the National Autonomous University of Mexico, the organization of the school activities in MOOCs and use of ICT play a fundamental role during the COVID-19 pandemic. The implications of this research promotes that educators use MOOCs and ICT to improve the educational conditions, create new remote school activities and build new virtual learning spaces. In conclusion, universities with the support of technological tools can improve the teaching-learning process and update the course during the COVID-19 pandemic. In particular, MOOCs represent a technological alternative to transform the school activities in the 21st century.
Today, Learning Management Systems (LMS) such as Moodle facilitate the teaching-learning process, promote the organization of creative activities from anywhere and allow the active participation of the students before, during and after the face-to-face sessions. The objective of this quantitative research is to analyze the teachers' perceptions about the impact of Moodle in the educational field considering data science and machine learning. The independent variable is the use of Moodle during the organization of new school activities and the dependent variables are the performance of the activities inside and outside the classroom and the participation and communication during the educational process. The participants are 70 teachers from the National Autonomous University of Mexico (UNAM). The results of machine learning (linear regression) indicate that Moodle positively influences the participation and communication during the educational process. Likewise, this LMS positively influences the performance of the activities inside and outside the classroom. In particular, Moodle allows improving the educational field through the realization of the online exams and discussion forums, diffusion of the tasks and consultation of the contents at any time. Data science identifies 3 predictive models on the impact of Moodle in the educational field. In fact, the decision tree technique establishes the conditions on the use of this LMS considering the characteristics of the teachers (sex and maximum degree of study). The implications of this research allow affirming that teachers have the opportunity to create, organize and carry out various creative and active activities through this LMS. Finally, teachers can use Moodle to update the activities of the courses and build new educational spaces that allow the active role of the students during the learning process.
El objetivo de esta investigación mixta es analizar el impacto del Aula invertida y las herramientas tecnológicas en el proceso educativo sobre la planeación de Proyectos en las Artes Visuales durante la pandemia COVID-19. En el Aula invertida, los estudiantes consultaron las lecturas digitales en Google Classroom antes de las sesiones virtuales, discutieron los temas en Zoom durante las sesiones virtuales y realizaron los foros de discusión en Google Classroom después de las sesiones virtuales. Los participantes son 24 estudiantes de la Licenciatura en Artes Visuales que cursaron la asignatura Gestión de Proyectos en la Universidad Nacional Autónoma de México durante el ciclo escolar 2021. Los resultados indican que las actividades del Aula Invertida influyen positivamente la asimilación del conocimiento y motivación de los estudiantes en la unidad Planeación de Proyectos. Por último, el aula invertida junto con la tecnología favorece la creación de nuevas actividades escolares durante la pandemia COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.