This paper presents ARACHNIS, a graphical user interface for the analysis and parametric design of Cable Driven Parallel Robots (CDPRs). ARACHNIS takes as inputs the design parameters of the robot, the task specifications, and returns a visualisation of the CDPR Wrench Feasible Workspace (WFW) and Interference-Free Constant Orientation Workspace (IFCOW). The WFW is traced from the capacity margin, a measure of the robustness of the equilibrium of the robot. Interferences between the moving parts of a CDPR are also determined by an existing technique for tracing the interference-free workspace of such robots. Finally, the WFW and the IFCOW of a planar cable-driven parallel robot and of a spatial cable-driven parallel robot are plotted in order to demonstrate the potential of ARACHNIS.
In the current paper, we present a control method based on muscle synergy extraction and adaptation to drive a human arm in a direct dynamics simulation of an overhead throwing motion. The experimental protocol for synergy extraction and model are first presented, followed by a control method consisting of a series of optimizations to adapt muscle parameters and synergies to match experimental data. Results show that the motion can be accurately reproduced thanks to the muscle synergy extraction and adaptation to the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.