The laser dynamic speckle is a phenomenon caused by the fluctuant interference of the laser light reflected from an illuminated surface where some kind of activity is taking place. Signals generated by the intensity changes in each pixel through the sequence are processed with the finality of identifying underlying activity in each point. In this work we compare the performance of a Rough Fuzzy Granular Descriptor (previously published) against a set of dynamic speckle descriptors based in time and frequency processing. To perform this evaluation a numerical simulation is proposed to explore their linearity, robustness, sensitivity related to the samples quantity, as well as also by their computing time. Also the robustness to inhomogeneous spatial intensity was evaluated in an experiment performed with the illuminated surface of an actual biological object.
In recent years there has been renewed interest in the development of novel grain classification methods that could complement traditional empirical tests. A speckle pattern occurs when a laser beam illuminates an optically rough surface that flickers when the object is active and is called biospeckle. In this work, we use laser biospeckle to classify maize (Zea mays L.) kernel hardness. A series of grains of three types of maize were cut and illuminated by a laser. A series of images were then registered, stored, and processed. These were compared with results obtained by floating test. The laser speckle technique was effective in discriminating the grains based on the presence of floury or vitreous endosperm and could be considered a feasible alternative to traditional floating methods. The results indicate that this methodology can distinguish floury and vitreous grains. Moreover, the assay showed higher discrimination capability than traditional tests. It could be potentially useful for maize classification and to increase the efficiency of processing dry milling corn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.