UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the survival and genomic stability of epidermal melanocytes is critical for inhibiting photocarcinogenesis, particularly melanoma, the most deadly form of skin cancer. The paracrine factors A-melanocortin and endothelin-1 are critical for the melanogenic response of cultured human melanocytes to UV radiation. We report that A-melanocortin and endothelin-1 rescued human melanocytes from UV radiation-induced apoptosis and reduced DNA photoproducts and oxidative stress. The survival effects of A-melanocortin and endothelin-1 were mediated by activation of the melanocortin 1 and endothelin receptors, respectively. Treatment of melanocytes with A-melanocortin and/or endothelin-1 before exposure to UV radiation activated the inositol triphosphate kinase-Akt pathway and increased the phosphorylation and expression of the microphthalmia-related transcription factor. Treatment with A-melanocortin and/or endothelin-1 enhanced the repair of cyclobutane pyrimidine dimers and reduced the levels of hydrogen peroxide induced by UV radiation. These effects are expected to reduce genomic instability and mutagenesis. (Cancer Res 2005; 65(10): 4292-9)
Epidermal melanocytes are particularly vulnerable to oxidative stress due to the pro-oxidant state generated during melanin synthesis, and to intrinsic antioxidant defences that are compromised in pathologic conditions. Melanoma is thought to be oxidative stress-driven, and melanocyte death in vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the current knowledge about melanin and the redox state of melanocytes, how paracrine factors help counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and vitiligo treatment.
Everyone knows and seems to agree that melanocytes are there to generate melanin -an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crestderived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time -at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanoctyes matter for normal epidermal and ⁄ or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but underappreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research. Praeludium pigmentosumFor those uninformed, the skin is an inert plastic wrap nature provides to keep us in and everything else out. How mistaken they are! The skin, in particular the epidermis, is one of the most active of all tissues ⁄ organs.Nature wisely placed the capillary circulation in the dermis. The epidermis has no vascular circulation thereby minimizing the probability that toxic chemicals, bacteria or fungi that penetrate through the stratum corneum can diffuse into the blood stream. That does not leave the epidermis defenseless. The epidermis has proteins called defensins that have anti-microbial properties. There are Toll-like receptors that recognize invading organisms and incite a host response. Even more interesting, it is well known that keratinocytes are avidly phagocytic. They have the capacity to phagocytize the wandering, invasive fungi or bacteria and digest them. It is both interesting and important that a-MSH stimulates the ingestion of candida by keratinocytes. a-MSH has a wide array of activities, only one of which is to stimulate the synthesis of melanin. There are receptors for a-MSH on Langerhans cells and keratinocytes as well as melanocytes. It has the ability to suppress infla...
Human skin exposed to solar ultraviolet radiation (UVR) results in a dramatic increase in the production of reactive oxygen species (ROS). The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs). Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.
The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.