Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.Electronic supplementary materialThe online version of this article (10.1007/s10811-017-1369-y) contains supplementary material, which is available to authorized users.
The symbiosis Azolla-Anabaena azollae, with a worldwide distribution in pantropical and temperate regions, is one of the most studied, because of its potential application as a biofertilizer, especially in rice fields, but also as an animal food and in phytoremediation. The cyanobiont is a filamentous, heterocystic cyanobacterium that inhabits the foliar cavities of the pteridophyte and the indusium on the megasporocarp (female reproductive structure). The classification and phylogeny of the cyanobiont is very controversial: from its morphology, it has been named Nostoc azollae, Anabaena azollae, Anabaena variabilis status azollae and recently Trichormus azollae, but, from its 16S rRNA gene sequence, it has been assigned to Nostoc and/or Anabaena, and from its phycocyanin gene sequence, it has been assigned as non-Nostoc and non-Anabaena. The literature also points to a possible co-evolution between the cyanobiont and the Azolla host, since dendrograms and phylogenetic trees of fatty acids, short tandemly repeated repetitive (STRR) analysis and restriction fragment length polymorphism (RFLP) analysis of nif genes and the 16S rRNA gene give a two-cluster association that matches the two-section ranking of the host (Azolla). Another controversy surrounds the possible existence of more than one genus or more than one species strain. The use of freshly isolated or cultured cyanobionts is an additional problem, since their morphology and protein profiles are different. This review gives an overview of how morphological, chemical and genetic analyses influence the classification and phylogeny of the cyanobiont and future research.
Physiological and biochemical effects of cylindrospermopsin (CYN), a cyanobacterial toxin that inhibits protein synthesis and released during a harmful cyanobacterial bloom, has been overlooked in plants. Therefore, at the present research, the toxic effects (physiological and biochemical) of a crude extract containing CYN were assessed in the aquatic fern Azolla filiculoides exposed to three concentrations (0.05, 0.5 and 5 μg CYN mL(-1)). At 5 μg CYN mL(-1), fern growth rate has showed a drastic decrease (0.001 g g(-1) day(-1)) corresponding to a 99.8% inhibition, but at the concentrations of 0.05 and 0.5 μg CYN mL(-1) the growth rate was similar to the control plants. Growth rate also indicated a IC50 of 2.9 μg CYN mL(-1). Those data point to the presence of other compounds in the crude extract may stimulate the fern growth and/or the fern is tolerant to CYN. Chlorophyll (a and b), carotenoids and protein content as well as the activities of glutathione reductase (GR) and glutathione-S-transferase (GST) has increased at 5 μg CYN mL(-1) which may indicate that photosynthesis and protein synthesis are not affected by CYN and the probable activation of defense and detoxifying mechanisms to overcome the effects induced by the presence of CYN. Low uptake of cylindrospermopsin (1.314 μg CYN g(-1) FW) and low bioconcentration factor (0.401) point towards to a safe use of A. filiculoides as biofertilizer and as food source, but also indicate that the fern is not suitable for CYN phytoremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.