BACKGROUND The assessment of bone age and skeletal maturity and its comparison to chronological age is an important task in the medical environment for the diagnosis of pediatric endocrinology, orthodontics and orthopedic disorders, and legal environment in what concerns if an individual is a minor or not when there is a lack of documents. Being a time-consuming activity that can be prone to inter- and intra-rater variability, the use of methods which can automate it, like Machine Learning techniques, is of value. OBJECTIVE The goal of this paper is to present the state of the art evidence, trends and gaps in the research related to bone age assessment studies that make use of Machine Learning techniques. METHOD A systematic literature review was carried out, starting with the writing of the protocol, followed by searches on three databases: Pubmed, Scopus and Web of Science to identify the relevant evidence related to bone age assessment using Machine Learning techniques. One round of backward snowballing was performed to find additional studies. A quality assessment was performed on the selected studies to check for bias and low quality studies, which were removed. Data was extracted from the included studies to build summary tables. Lastly, a meta-analysis was performed on the performances of the selected studies. RESULTS 26 studies constituted the final set of included studies. Most of them proposed automatic systems for bone age assessment and investigated methods for bone age assessment based on hand and wrist radiographs. The samples used in the studies were mostly comprehensive or bordered the age of 18, and the data origin was in most of cases from United States and West Europe. Few studies explored ethnic differences. CONCLUSIONS There is a clear focus of the research on bone age assessment methods based on radiographs whilst other types of medical imaging without radiation exposure (e.g. magnetic resonance imaging) are not much explored in the literature. Also, socioeconomic and other aspects that could influence in bone age were not addressed in the literature. Finally, studies that make use of more than one region of interest for bone age assessment are scarce.
BackgroundDementia is a complex disorder characterized by poor outcomes for the patients and high costs of care. After decades of research little is known about its mechanisms. Having prognostic estimates about dementia can help researchers, patients and public entities in dealing with this disorder. Thus, health data, machine learning and microsimulation techniques could be employed in developing prognostic estimates for dementia.ObjectiveThe goal of this paper is to present evidence on the state of the art of studies investigating and the prognosis of dementia using machine learning and microsimulation techniques.MethodTo achieve our goal we carried out a systematic literature review, in which three large databases—Pubmed, Socups and Web of Science were searched to select studies that employed machine learning or microsimulation techniques for the prognosis of dementia. A single backward snowballing was done to identify further studies. A quality checklist was also employed to assess the quality of the evidence presented by the selected studies, and low quality studies were removed. Finally, data from the final set of studies were extracted in summary tables.ResultsIn total 37 papers were included. The data summary results showed that the current research is focused on the investigation of the patients with mild cognitive impairment that will evolve to Alzheimer’s disease, using machine learning techniques. Microsimulation studies were concerned with cost estimation and had a populational focus. Neuroimaging was the most commonly used variable.ConclusionsPrediction of conversion from MCI to AD is the dominant theme in the selected studies. Most studies used ML techniques on Neuroimaging data. Only a few data sources have been recruited by most studies and the ADNI database is the one most commonly used. Only two studies have investigated the prediction of epidemiological aspects of Dementia using either ML or MS techniques. Finally, care should be taken when interpreting the reported accuracy of ML techniques, given studies’ different contexts.
BackgroundBone age assessment (BAA) is an important tool for diagnosis and in determining the time of treatment in a number of pediatric clinical scenarios, as well as in legal settings where it is used to estimate the chronological age of an individual where valid documents are lacking. Traditional methods for BAA suffer from drawbacks, such as exposing juveniles to radiation, intra- and interrater variability, and the time spent on the assessment. The employment of automated methods such as deep learning and the use of magnetic resonance imaging (MRI) can address these drawbacks and improve the assessment of age.ObjectiveThe aim of this paper is to propose an automated approach for age assessment of youth and young adults in the age range when the length growth ceases and growth zones are closed (14-21 years of age) by employing deep learning using MRI of the knee.MethodsThis study carried out MRI examinations of the knee of 402 volunteer subjects—221 males (55.0%) and 181 (45.0%) females—aged 14-21 years. The method comprised two convolutional neural network (CNN) models: the first one selected the most informative images of an MRI sequence, concerning age-assessment purposes; these were then used in the second module, which was responsible for the age estimation. Different CNN architectures were tested, both training from scratch and employing transfer learning.ResultsThe CNN architecture that provided the best results was GoogLeNet pretrained on the ImageNet database. The proposed method was able to assess the age of male subjects in the range of 14-20.5 years, with a mean absolute error (MAE) of 0.793 years, and of female subjects in the range of 14-19.5 years, with an MAE of 0.988 years. Regarding the classification of minors—with the threshold of 18 years of age—an accuracy of 98.1% for male subjects and 95.0% for female subjects was achieved.ConclusionsThe proposed method was able to assess the age of youth and young adults from 14 to 20.5 years of age for male subjects and 14 to 19.5 years of age for female subjects in a fully automated manner, without the use of ionizing radiation, addressing the drawbacks of traditional methods.
Nowadays, Artificial Intelligence (AI) and machine learning (ML) have successfully provided automated solutions to numerous real-world problems. Healthcare is one of the most important research areas for ML researchers, with the aim of developing automated disease prediction systems. One of the disease detection problems that AI and ML researchers have focused on is dementia detection using ML methods. Numerous automated diagnostic systems based on ML techniques for early prediction of dementia have been proposed in the literature. Few systematic literature reviews (SLR) have been conducted for dementia prediction based on ML techniques in the past. However, these SLR focused on a single type of data modality for the detection of dementia. Hence, the purpose of this study is to conduct a comprehensive evaluation of ML-based automated diagnostic systems considering different types of data modalities such as images, clinical-features, and voice data. We collected the research articles from 2011 to 2022 using the keywords dementia, machine learning, feature selection, data modalities, and automated diagnostic systems. The selected articles were critically analyzed and discussed. It was observed that image data driven ML models yields promising results in terms of dementia prediction compared to other data modalities, i.e., clinical feature-based data and voice data. Furthermore, this SLR highlighted the limitations of the previously proposed automated methods for dementia and presented future directions to overcome these limitations.
Background Growth development is traditionally evaluated with plain radiographs of the hand and wrist to visualize bone structures using ionizing radiation. Meanwhile, MRI visualizes bone and cartilaginous tissue without radiation exposure. Purpose To determine the state of growth plate closure of the knee in healthy adolescents and young adults and compare the reliability of staging using cartilage sequences and T1-weighted (T1W) sequence between pediatric and general radiologists. Material and Methods A prospective, cross-sectional study of MRI of the knee with both cartilage and T1W sequences was performed in 395 male and female healthy subjects aged between 14.0 and 21.5 years old. The growth plate of the femur and the tibia were graded using a modified staging scale by two pediatric and two general radiologists. Femur and tibia were graded separately with both sequences. Results The intraclass correlation was overall excellent. The inter- and intra-observer agreement for pediatric radiologists on T1W was 82% (κ = 0.73) and 77% (κ = 0.65) for the femur and 90% (κ = 0.82) and 87% (κ = 0.75) for the tibia. The inter-observer agreement for general radiologists on T1W was 69% (κ = 0.56) for the femur and 56% (κ = 0.34) for the tibia. Cohen’s kappa coefficient showed a higher inter- and intra-observer agreement for cartilage sequences than for T1W: 93% (κ = 0.86) and 89% (κ = 0.79) for the femur and 95% (κ = 0.90) and 91% (κ = 0.81) for the tibia. Conclusion Cartilage sequences are more reliable than T1W sequence in the assessment of the growth plate in adolescents and young adults. Pediatric radiology experience is preferable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.