This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright
Two-dimensional (1)H-(13)C MAS-J-HMQC solid-state NMR spectra of the two anomeric forms of maltose at natural abundance are presented. The experimental (1)H chemical shifts of the CH and CH(2) protons are assigned using first-principles chemical shift calculations that employ a plane-wave pseudopotential approach. Further calculations show that the calculated change in the (1)H chemical shift when comparing the full crystal and an isolated molecule is a quantitative measure of intermolecular C-H...O weak hydrogen bonding. Notably, a clear correlation between a large chemical shift change (up to 2 ppm) and both a short H...O distance (<2.7 A) and a CHO bond angle greater than 130 degrees is observed, thus showing that directionality is important in C-H...O hydrogen bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.