Cationic liposomes have been proposed as biocompatible gene delivery vectors, able to overcome the barriers imposed by cell membranes. Besides lipids, other surfactant molecules have been successfully used in the composition of gene carriers. In the present work, we used a Gemini surfactant, represented by the general structure [C(14)H(29)(CH(3))(2)N(+)(CH(2))(2)N(+)(CH(3))(2)C(14)H(29)]2Br(-) and herein designated 14-2-14, to prepare cationic gene carriers, both as the sole component and in combination with neutral helper lipids, cholesterol and DOPE. The effectiveness of three Gemini-based formulations, namely neat 14-2-14, 14-2-14:Chol (1:1 molar ratio) and 14-2-14:Chol:DOPE (2:1:1 molar ratio), to mediate gene delivery was evaluated in DNA mixtures of +/- charge ratios ranging from 1/1 to 12/1. After ruling out cytotoxicity as responsible for the differences observed in the transfection competence, structural and physical properties of the vector were investigated, using several techniques. The size and surface charge density (zeta potential) of surfactant-based structures were determined by conventional techniques and the thermotropic behaviour of aqueous dispersions of surfactant/lipid/DNA formulations was monitored by fluorescence polarization of DPH and DPH-PA probes. The capacity of lipoplexes to interact with membrane-mimicking lipid bilayers was evaluated, using the PicoGreen assay and a FRET technique. Our data indicate inefficiency of the neat 14-2-14 formulation for gene delivery, which could result from the large dimensions of the particles and/or from its relative incompetence to release DNA upon interaction with anionic lipids. The addition of cholesterol or cholesterol and DOPE conferred to Gemini-based gene carrier transfection activity at specific ranges of +/- charge ratios. Fluorescence polarization data suggest that an order parameter within a specific range was apparently needed for complexes to display maximal transfection efficiency. The transfection-competent formulations showed to be efficiently destabilized by interaction with different anionic and zwitterionic bilayers, including those containing PS and cardiolipin. These data are discussed in terms of the potential of these formulations to address different intracellular targets.
Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by progressive memory impairment, behavioral changes, and, ultimately, loss of consciousness and death. Recently, microRNA (miRNA) dysfunction has been associated with increased production and impaired clearance of amyloid-b (Ab) peptides, whose accumulation is one of the most well-known pathophysiological markers of this disease. In this study, we identified several miRNAs capable of targeting key proteins of the amyloidogenic pathway. The expression of one of these miRNAs, miR-31, previously found to be decreased in AD patients, was able to simultaneously reduce the levels of APP and Bace1 mRNA in the hippocampus of 17-month-old AD triple-transgenic (3xTg-AD) female mice, leading to a significant improvement of memory deficits and a reduction in anxiety and cognitive inflexibility. In addition, lentiviral-mediated miR-31 expression significantly ameliorated AD neuropathology in this model, drastically reducing Ab deposition in both the hippocampus and subiculum. Furthermore, the increase of miR-31 levels was enough to reduce the accumulation of glutamate vesicles in the hippocampus to levels found in non-transgenic age-matched animals. Overall, our results suggest that miR-31-mediated modulation of APP and BACE1 can become a therapeutic option in the treatment of AD.
IntroductionMononuclear phagocytes play a critical role during Alzheimer's disease (AD) pathogenesis due to their contribution to innate immune responses and amyloid beta (Aβ) clearance mechanisms.MethodsBlood-derived monocytes (BDMs) and monocyte-derived macrophages (MDMs) were isolated from blood of AD, mild cognitive impairment (MCI) patients, and age-matched healthy controls for molecular and phenotypic comparisons.ResultsThe chemokine/chemokine receptor CCL2/CCR2 axis was impaired in BDMs from AD and MCI patients, causing a deficit in cell migration. Changes were also observed in MDM-mediated phagocytosis of Aβ fibrils, correlating with alterations in the expression and processing of the triggering receptor expressed on myeloid cells 2 (TREM2). Finally, immune-related microRNAs (miRNAs), including miR-155, -154, -200b, -27b, and -128, were found to be differentially expressed in these cells.DiscussionThis work provides evidence that chemotaxis and phagocytosis, two crucial innate immune functions, are impaired in AD and MCI patients. Correlations with miRNA levels suggest an epigenetic contribution to systemic immune dysfunction in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.