Grateloupia turuturu is an invasive macroalga on the Iberian coast, known to produce bioactive compounds with different cosmeceutical bioactivities, namely UV shielding and antioxidants. The goal of this study was to optimize the extraction procedure of main bioactivities of this species with cosmetic potential, using Response Surface Methodology. Two Box–Behnken designs were used to evaluate the effect of ethanol concentration (0–50%), liquid-solid ratio, time, pH, and temperature on yield, UV absorbance, and antioxidant activity. Both optimizations showed a similar trend: aqueous extracts have higher yields and extracts performed with ethanol as part of the solvent have higher activities concerning UV absorbance and antioxidant activity. For all the extracts an absorption peak between 320 and 340 nm was observed. This data now allows further studies by narrowing the extracts worthful of characterization. The development of industry-friendly extraction methods allows the valorization of this invasive species, contributing for the potential creation of natural and eco-friendly products by the cosmetic industry while contributing to the restoration of affected environments.
The invasive macroalga Grateloupia turuturu is known to contain a diversity of bioactive compounds with different potentialities. Among them are compounds with relevant bioactivities for cosmetics. Considering this, this study aimed to screen bioactivities with cosmeceutical potential, namely, antioxidant, UV absorbance, anti-enzymatic, antimicrobial, and anti-inflammatory activities, as well as photoprotection potential. Extractions with higher concentrations of ethanol resulted in extracts with higher antioxidant activities, while for the anti-enzymatic activity, high inhibition percentages were obtained for elastase and hyaluronidase with almost all extracts. Regarding the antimicrobial activity, all extracts showed to be active against E. coli, S. aureus, and C. albicans. Extracts produced with higher percentages of ethanol were more effective against E. coli and with lower percentages against the other two microorganisms. Several concentrations of each extract were found to be safe for fibroblasts, but no photoprotection capacity was observed. However, one of the aqueous extracts was responsible for reducing around 40% of the nitric oxide production on macrophages, showing its anti-inflammatory potential. This work highlights G. turuturu’s potential in the cosmeceutical field, contributing to the further development of natural formulations for skin protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.