Ion mobility spectrometry enhances the performance characteristics of liquid chromatography-mass spectrometry workflows intended to steroid profiling by providing a new separation dimension and a novel characterization parameter, the so-called collision cross section (CCS). This work proposes the first CCS database for 300 steroids (i.e., endogenous, including phase I and phase II metabolites, and exogenous synthetic compounds), which involves 1080 ions and covers the CCS of 127 androgens, 84 estrogens, 50 corticosteroids, and 39 progestagens. This large database provides information related to all the ionized species identified for each steroid in positive electrospray ionization mode as well as for estrogens in negative ionization mode. CCS values have been measured using nitrogen as drift gas in the ion mobility cell. Generally, direct correlation exists between mass-to-charge ratio ( m/ z) and CCS because both are related parameters. However, several steroids mainly steroid glucuronides and steroid esters have been characterized as more compact or elongated molecules than expected. In such cases, CCS results in additional relevant information to retention time and mass spectral data for the identification of steroids. Moreover, several isomeric steroid pairs (e.g., 5β-androstane-3,17-dione and 5α-androstane-3,17-dione) have been separated based on their CCS differences. These results indicate that adding the CCS to databases in analytical workflows increases selectivity, thus improving the confidence in steroids analysis. Consequences in terms of identification and quantification are discussed. Quality criteria and a construction of an interlaboratory reproducibility approach are also reported for the obtained CCS values. The CCS database described here is made publicly available.
In the last decade, ion mobility spectrometry (IMS) has reemerged as an analytical separation technique, especially due to the commercialization of ion mobility mass spectrometers. Its applicability has been extended beyond classical applications such as the determination of chemical warfare agents and nowadays it is widely used for the characterization of biomolecules (e.g., proteins, glycans, lipids, etc.) and, more recently, of small molecules (e.g., metabolites, xenobiotics, etc.). Following this trend, the interest in this technique is growing among researchers from different fields including food science. Several advantages are attributed to IMS when integrated in traditional liquid chromatography (LC) and gas chromatography (GC) mass spectrometry (MS) workflows: (1) it improves method selectivity by providing an additional separation dimension that allows the separation of isobaric and isomeric compounds; (2) it increases method sensitivity by isolating the compounds of interest from background noise; (3) and it provides complementary information to mass spectra and retention time, the so-called collision cross section (CCS), so compounds can be identified with more confidence, either in targeted or non-targeted approaches. In this context, the number of applications focused on food analysis has increased exponentially in the last few years. This review provides an overview of the current status of IMS technology and its applicability in different areas of food analysis (i.e., food composition, process control, authentication, adulteration and safety).
A new analytical method based on capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) is proposed and validated for the identification and simultaneous quantification of eight quinolones for veterinary use in bovine raw milk. The studied quinolones include danofloxacin, sarafloxacin, ciprofloxacin, marbofloxacin, enrofloxacin, difloxacin, oxolinic acid, and flumequine, whose contents are regulated by the EU Council Regulation no. 2377/90 in animal edible tissues. Different parameters (i.e., separation buffer composition and electrospray conditions) were optimized in order to obtain both an adequate CE separation and a high sensitivity, using experimental design methodology to consider the interactions among the studied variables. MS/MS experiments using an ion trap as analyzer operating in the multiple reaction monitoring mode were carried out to achieve the minimum number of identification points according to the 2002/657/EC European Decision. For the quantification in bovine raw milk samples, a two-step solid-phase extraction procedure was developed using Oasis MAX and HLB cartridges without protein precipitation. Satisfactory results were obtained in terms of linearity (r2 between 0.989 and 0.992) and precision (RSD below 18%). The limits of detection and quantification (below 6 and 24 ppb, respectively) were in all cases lower than the maximum residues limits tolerated for these compounds in milk, the recoveries ranging from 81 to 110%, indicating the potential of the CZE-MS/MS for the analysis of regulated quinolone antibiotics in the food quality and safety control areas.
CE- and microchip-based separations coupled with LIF are powerful tools for the separation, detection and determination of biomolecules. CE with certain configurations has the potential to detect a small number of molecules or even a single molecule, thanks to the high spatial coherence of the laser source which permits the excitation of very small sample volumes with high efficiency. This review article discusses the use of LIF detection for the analysis of peptides and proteins in CE. The most common laser sources, basic instrumentation, derivatization modes and set-ups are briefly presented and special attention is paid to the different fluorogenic agents used for pre-, on- and postcapillary derivatization of the functional groups of these compounds. A table summarizing major applications of these derivatization reactions to the analysis of peptides and proteins in CE-LIF and a bibliography with 184 references are provided which covers papers published to the end of 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.