Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use), curcumin and ingenol mebutate (in clinical trials) will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.