Diagnosis of Parkinson’s disease (PD) is mainly based on motor symptoms and can be supported by imaging techniques such as the single photon emission computed tomography (SPECT) or M-iodobenzyl-guanidine cardiac scintiscan (MIBG), which are expensive and not always available. In this review, we analyzed studies that used machine learning (ML) techniques to diagnose PD through resting state or motor activation electroencephalography (EEG) tests. Methods: The review process was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. All publications previous to May 2020 were included, and their main characteristics and results were assessed and documented. Results: Nine studies were included. Seven used resting state EEG and two motor activation EEG. Subsymbolic models were used in 83.3% of studies. The accuracy for PD classification was 62–99.62%. There was no standard cleaning protocol for the EEG and a great heterogeneity in the characteristics that were extracted from the EEG. However, spectral characteristics predominated. Conclusions: Both the features introduced into the model and its architecture were essential for a good performance in predicting the classification. On the contrary, the cleaning protocol of the EEG, is highly heterogeneous among the different studies and did not influence the results. The use of ML techniques in EEG for neurodegenerative disorders classification is a recent and growing field.
Monitoring of motor symptom fluctuations in Parkinson’s disease (PD) patients is currently performed through the subjective self-assessment of patients. Clinicians require reliable information about a fluctuation’s occurrence to enable a precise treatment rescheduling and dosing adjustment. In this review, we analyzed the utilization of sensors for identifying motor fluctuations in PD patients and the application of machine learning techniques to detect fluctuations. The review process followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Ten studies were included between January 2010 and March 2021, and their main characteristics and results were assessed and documented. Five studies utilized daily activities to collect the data, four used concrete scenarios executing specific activities to gather the data, and only one utilized a combination of both situations. The accuracy for classification was 83.56–96.77%. In the studies evaluated, it was not possible to find a standard cleaning protocol for the signal captured, and there is significant heterogeneity in the models utilized and in the different features introduced in the models (using spatiotemporal characteristics, frequential characteristics, or both). The two most influential factors in the good performance of the classification problem are the type of features utilized and the type of model.
Background: Parkinson’s disease (PD) affects 7–10 million people worldwide. Its diagnosis is clinical and can be supported by image-based tests, which are expensive and not always accessible. Electroencephalograms (EEG) are non-invasive, widely accessible, low-cost tests. However, the signals obtained are difficult to analyze visually, so advanced techniques, such as Machine Learning (ML), need to be used. In this article, we review those studies that consider ML techniques to study the EEG of patients with PD. Methods: The review process was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which are used to provide quality standards for the objective evaluation of various studies. All publications before February 2022 were included, and their main characteristics and results were evaluated and documented through three key points associated with the development of ML techniques: dataset quality, data preprocessing, and model evaluation. Results: 59 studies were included. The predominating models were Support Vector Machine (SVM) and Artificial Neural Networks (ANNs). In total, 31 articles diagnosed PD with a mean accuracy of 97.35 ± 3.46%. There was no standard cleaning protocol for EEG and a great heterogeneity in EEG characteristics was shown, although spectral features predominated by 88.37%. Conclusions: Neither the cleaning protocol nor the number of EEG channels influenced the classification results. A baseline value was provided for the PD diagnostic problem, although recent studies focus on the identification of cognitive impairment.
Background: Brain connectivity has shown to be a key characteristic in the study of both Parkinson’s Disease (PD) and the response of the patients to the dopaminergic medication. Time series analysis has been used here for the first time to study brain connectivity changes during motor activation in PD. Methods: A 64-channel EEG signal was registered during unilateral motor activation and resting-state in 6 non-demented PD patients before and after the administration of levodopa and in 6 matched healthy controls. Spectral entropy correlation, coherence, and interhemispheric divergence differences among PD patients and controls were analyzed under the assumption of stationarity of the time series. Results: During the motor activation test, PD patients showed an increased correlation coefficient (both hands p < 0.001) and a remarkable increase in coherence in all frequency range compared to the generalized reduction observed in controls (both hands p < 0.001). The Kullback–Leibler Divergence (KLD) of the Spectral Entropy between brain hemispheres was observed to increase in controls (right hand p = 0.01; left hand p = 0.015) and to decrease in PD patients (right hand p = 0.02; left hand p = 0.002) with motor activation. Conclusions: Our results suggest that the oscillatory activity of the different cortex areas within healthy brains is relatively independent of the rest. PD brains exhibit a stronger connectivity which grows during motor activation. The levodopa mitigates this anomalous performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.