Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.
Scleractinian corals are the principal builders of coral reefs. These megadiverse ecosystems are declining due to coral mortality from a variety of stressors, including disease. Corals are dependent upon symbiotic dinoflagellates in the family Symbiodiniaceae for phototrophic contributions to their energy budgets. However, suppression of host immunity may be necessary to maintain these intracellular symbioses. To explore the consequences of symbiosis on host immunity, we manipulated symbiont density by increasing nitrogen availability. Replicate cores from four colonies of the Caribbean coral, Orbicella faveolata, were reared in seawater treated with ammonium for 1 month to increase symbiont density. Corals were then immunestimulated using lipopolysaccharide and poly I:C. Gene expression was analyzed using RNAseq and symbiont density was quantified (as symbiont:host cell ratio) using quantitative PCR (qPCR). Ammonium treatment had limited positive effects on host immunity. In contrast, increases in symbiont density had large negative effects on host expression of immune-related transcripts. These results suggest links between nutrient enrichment and coral disease may be the result of the effect of increased symbiont density on host immunity, rather than the direct effect of the nutrients. Further study of the trade-offs between symbiont density and immunity may help understand how decreasing water quality and increasing disease will shape future reef communities.
Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp . colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region ( Pocillopora “ type 1”) increased its association with thermotolerant algal symbionts ( Durusdinium glynnii ) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora “type 3”, which did not acquire D. glynnii . Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii . However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.