Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.
Mouse models of retinitis pigmentosa (RP) are essential tools in the pursuit to understand fully what cell types and processes underlie the degeneration observed in RP. Knowledge of these processes is required if we are to develop successful therapies to treat this currently incurable disease. We have used the rd10 mouse model of RP to study retinal morphology prior to photoreceptor loss, using immunohistochemistry and confocal microscopy on cryosections, since little is known about how the mutation affects the retina during this period. We report novel findings that the mutation in the rd10 mouse results in retinal abnormalities earlier than was previously thought. Defects in rod and cone outer segments, bipolar cells, amacrine cells and photoreceptor synapses were apparent in the retina during early stages of postnatal retinal development and prior to the loss of photoreceptors. Additionally, we observed a dramatic response of glial cells during this period. Microglia responded as early as postnatal day (P) 5; ~13 days before any photoreceptor loss is detected with Müller glia and astrocytes exhibiting changes from P10 and P15 respectively. Overall, these findings present pathological aspects to the postnatal development of the rd10 retina, contributing significantly to our understanding of disease onset and progression in the rd10 mouse and provide a valuable resource for the study of retinal dystrophies.
Abstract'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors a, b and c were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors.
Norgestrel, a progesterone analogue, has demonstrated neuroprotective effects in a mouse model of retinitis pigmentosa. Neuroprotection is achieved in part through Norgestrels anti-inflammatory properties, alleviating detrimental microglial activity. Gliosis is a feature of many neurodegenerative diseases of the retina, including retinitis pigmentosa. Müller glia, a type of macroglia found in the retina, are major contributors of gliosis, characterized by the upregulation of glial fibrillary acidic protein (GFAP). Microglia-Müller glia crosstalk has been implicated in the initiation of gliosis. In the rd10 retina, increased microglial activity and gliotic events are observed prior to the onset of photoreceptor loss. We hypothesized that Norgestrels dampening effects on harmful microglial activity would consequently impact on gliosis. In the current study, we explore the role of microglia-Müller glia crosstalk in degeneration and Norgestrel-mediated neuroprotection in the rd10 retina. Norgestrels neuroprotective effects in the rd10 retina coincide with significant decreases in both microglial activity and Müller cell gliosis. Using a Müller glial cell line, rMC-1, and isolated microglia, we show that rd10 microglia stimulate GFAP production in rMC-1 cells. Norgestrel attenuates gliosis through direct actions on both microglia and Müller glia. Norgestrel reduces the release of harmful stimuli from microglia, such as interferon-γ, which might otherwise signal to Müller glia and stimulate gliosis. We propose that Norgestrel also targets Müller cell gliosis directly, by limiting the availability of pSTAT3, a known transcription factor for GFAP. These findings highlight an important aspect to Norgestrels neuroprotective effects in the diseased retina, in combating Müller cell gliosis.
Retinitis pigmentosa (RP) is one of the most common retinal degenerative conditions affecting people worldwide, and is currently incurable. It is characterized by the progressive loss of photoreceptors, in which the death of rod cells leads to the secondary death of cone cells; the cause of eventual blindness. As rod cells die, retinal-oxygen metabolism becomes perturbed, leading to increased levels of reactive oxygen species (ROS) and thus oxidative stress; a key factor in the secondary death of cones. In this study, norgestrel, an FDA-approved synthetic analog of progesterone, was found to be a powerful neuroprotective antioxidant, preventing light-induced ROS in photoreceptor cells, and subsequent cell death. Norgestrel also prevented light-induced photoreceptor morphological changes that were associated with ROS production, and that are characteristic of RP. Further investigation showed that norgestrel acts via post-translational modulation of the major antioxidant transcription factor Nrf2; bringing about its phosphorylation, subsequent nuclear translocation, and increased levels of its effector protein superoxide dismutase 2 (SOD2). In summary, these results demonstrate significant protection of photoreceptor cells from oxidative stress, and underscore the potential of norgestrel as a therapeutic option for RP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.