Aiming at the development of new benzopyran-based photocleavable protecting groups, novel chloromethylated and hydroxymethylated 2-oxo-2H-benzo[h]benzopyran derivatives bearing a methoxy substituent were designed and used in the synthesis of a series of fluorescent bioconjugates, by linking through an ester or urethane bond to several model neurotransmitter amino acids (glycine, alanine, beta-alanine and gamma-aminobutyric acid, GABA). The resulting fluorescent bioconjugates with emission in the visible range and high fluorescent quantum yields, were subjected to photocleavage reaction in methanol/HEPES buffer (80:20) solution at different wavelengths of irradiation (250, 300, 350 and 419 nm) and photocleavage kinetic data were obtained.
Aiming at the enhancement of the performance of (9-methoxy-3-oxo-3H-benzo[f]benzopyran-1-yl) methyl ester as photocleavable protecting group for the carboxylic acid function at long-wavelengths, 9-methoxy-3-thioxo-3H-benzo[f]benzopyran-L-valine and L-phenylalanine model conjugates were prepared through a thionation reaction of the corresponding oxo-benzobenzopyrans. These thioxobenzobenzopyran derivatives were subjected to photocleavage reactions in the same conditions as the parent oxo-benzobenzopyrans at different wavelengths of irradiation, and photocleavage data were obtained. It was found that the exchange of the carbonyl by a thiocarbonyl group enhanced the performance of the heterocyclic protecting group at 419 nm by improving the photolysis rates, making it an appropriate group for practical applications at long wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.