The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.
Clostridium difficile is an opportunistic pathogen and the main cause of antibiotic-associated diarrhea. Adherence of C. difficile to host cells is modulated by proteins present on the bacterial cell surface or secreted into the environment. Cleavage of collagen-binding proteins is mediated by the zinc metalloprotease PPEP-1, which was identified as one of the most abundant secreted proteins of C. difficile. Here, we exploit the PPEP-1 signal sequence to produce novel secreted enzymes. We have constructed two functional secreted reporters, AmyE and sLuc for gene expression analysis in C. difficile. AmyE extracellular activity results in starch degradation and can be exploited to demonstrate promoter activity in liquid or plate-based assays. sLuc activity could reliably be detected in culture supernatant when produced from an inducible or native promoter. The secreted reporters can be easily assessed under aerobic conditions, without the need of complex sample processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.