In this article, a simple expression for the center of mass of a system of material points in a two-dimensional surface of Gaussian constant negative curvature is given. By using the basic techniques of geometry, we obtained an expression in intrinsic coordinates, and we showed how this extends the definition for the Euclidean case. The argument is constructive and serves to define the center of mass of a system of particles on the one-dimensional hyperbolic sphere LR1.
We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one dimensional. We use the method of reflection of Alexandrov and we show one application of this method and the maximum principle for elliptic operators in problems with conditions of Neumann. Some results of symmetry for elliptic problems with condition of Neumann on the boundary may be extended to elliptic operators more general than the Laplacian
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.