Highlights d Senescent cells are induced at the lesion periphery upon spinal cord injury d Administration of senolytic drugs promotes locomotor and sensory recovery d ABT-263 treatment suppresses pro-inflammatory and profibrotic SASP responses d Targeting senescent cells favors a pro-repair microenvironment after injury
Zebrafish are able to regenerate the spinal cord and recover motor and sensory functions upon severe injury, through the activation of cells located at the ependymal canal. Here, we show that cells surrounding the ependymal canal in the adult zebrafish spinal cord express Foxj1a. We demonstrate that ependymal cells express Foxj1a from their birth in the embryonic neural tube and that Foxj1a activity is required for the final positioning of the ependymal canal. We also show that in response to spinal cord injury, Foxj1a ependymal cells actively proliferate and contribute to the restoration of the spinal cord structure. Finally, this study reveals that Foxj1a expression in the injured spinal cord is regulated by regulatory elements activated during regeneration. These data establish Foxj1a as a pan-ependymal marker in development, homeostasis and regeneration and may help identify the signals that enable this progenitor population to replace lost cells after spinal cord injury.
Spinal cord injury (SCI) is a complex condition, with limited therapeutic options, that results in sensory and motor disabilities. To boost discovery of novel therapeutics, we designed a simple and efficient drug screening platform. This innovative approach allows to determine locomotor rescue properties of small molecules in a zebrafish (
Danio rerio
) larval spinal cord transection model. We validated our screening platform by showing that Riluzole and Minocycline, two molecules that are in clinical trials for SCI, promote rescue of the locomotor function of the transected larvae. Further validation of the platform was obtained through the blind identification of D-Cycloserine, a molecule scheduled to enter phase IV clinical trials for SCI. Importantly, we identified Tranexamic acid and further showed that this molecule maintains its locomotor recovery properties in a rodent female contusion model. Our screening platform, combined with drug repurposing, promises to propel the rapid translation of novel therapeutics to improve SCI recovery in humans.
The stereotypic left-right (LR) asymmetric distribution of internal organs is due to an asymmetric molecular cascade in the lateral plate mesoderm (LPM) that is originated at the embryonic node. In chicken embryos, molecular asymmetries at Hensen's node are created by leftward cell movements that occur transiently. What terminates these movements, and, moreover, what is the impact of prolonging them on the LR asymmetry cascade? We show that leftward movements last longer when N-cadherin function is blocked and cease prematurely when N-cadherin is overexpressed on the right side of the node. The prolonged leftward movements lead to loss of asymmetric expression of fgf8 and nodal at the node region. This originates an abnormal expression of the asymmetric genes cer1 and snai1 in the LPM, resulting in mispositioned hearts. We conclude that N-cadherin stops the leftward cell movements and that this termination is an essential step in the establishment of LR asymmetry.
Persistent senescent cells (SCs) are known to underlie ageing-related chronic disorders, but it is now recognized that SCs may be at the center of tissue remodeling events, namely during development or organ repair. Here we show that two distinct senescence profiles are induced in the context of a spinal cord injury between the regenerating zebrafish and the non-regenerating mouse. While induced-SCs in the zebrafish are progressively cleared out, they accumulate over time in mice. Depletion of SCs in spinal cord injured mice, with different senolytic drugs, improved locomotor, sensory and bladder functions. This functional recovery is associated with improved myelin sparing, reduced fibrotic scar, attenuated inflammation and increased axonal growth. Targeting SCs is a promising therapeutic strategy not only for spinal cord injuries but potentially for other organs that lack regenerative competence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.