The available chemotherapeutic drugs for the treatment of leishmaniasis present problems relating to efficacy, emergence of parasite resistance, and adverse effects and cost. Azole antifungal drugs have been repurposed for this proposition but the clinical response has been variable. In this sense, this study assessed the leishmanicidal and immunomodulatory activities of azoles-derived imidazolium salts (IS), being the ionic imidazole-derived equivalents: 1-n-butyl-3-methylimidazolium chloride (CMImCl), 1-n-decyl-3-methylimidazolium chloride (CMImCl), 1-n-hexadecyl-3-methylimidazolium chloride (CMImCl), 1-n-hexadecyl-3-methylimidazolium methanesulfonate (CMImMeS), 1-n-hexadecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (CMImNTf) and 1-methyl-3-n-octadecylimidazolium chloride (CMImCl). Promastigotes of Leishmania amazonensis were incubated with IS at concentrations ranging from 0.1 to 100 μM, and the parasite survival was monitored. The effects of IS on reactive oxygen species (ROS) production and mitochondrial membrane potential of promastigotes, as well as on cytotoxicity against peripheral blood mononuclear cells (PBMC) and human erythrocytes were determined. Besides, the activities of IS against amastigotes and nitric oxide production were also evaluated. The IS inhibited parasite growth and showed potent leishmanicidal activity against promastigotes of L. amazonensis. In addition, IS induced mitochondrial dysfunction and ROS production in parasites, and presented low cytotoxicity against PBMC and human erythrocytes. Furthermore, at very low concentration (0.5 μM), CMImCl, CMImMeS, CMImCl, CMImCl and CMImNTf were able to kill intramacrophage parasites at levels of 91.3, 100, 94.4, 95.3 and 35.6%, respectively. These results indicate that IS are promising candidates for the development of drugs against L. amazonensis.
523Pesq. Vet. Bras. 30(7):523-528, julho 2010 RESUMO.-As lactonas macrocíclicas (LMs) (avermectinas e milbemicinas) são endectocidas amplamente utilizados em animais e em algumas parasitoses humanas. Em bovinos, a resistência parasitária às LMs é emergente, e o surgimento de formulações que diferem nas suas propriedades farmacológicas tornou complexa a escolha da droga mais indicada a cada caso. Com o objetivo de avaliar possí-veis alternativas para recuperar a eficácia de LMs sobre cepas resistentes de nematódeos gastrintestinais, testaram-se, neste estudo, dez diferentes tratamentos a base de LMs sobre uma população de nematódeos gastrintestinais de bovinos a qual, sabidamente, sofrera pressão de seleção por avermectinas a 1%. Adicionalmente, testou-se um benzimidazol. A eficácia das drogas foi calculada com base na redução de ovos por grama de fezes (OPG) dos bovinos. A resistência de cada gênero foi avaliada por meio de identificação de larvas, obtidas de cultivos nas fezes, pré-e pós-tratamentos. Não se obteve a eficácia desejada com o emprego de avermectinas The macrocyclic lactones (MLs) (avermectins and milbemycins) are endectocides broadly used in livestock and in some parasitic diseases of humans. In cattle, parasite resistance to MLs is emerging, and the appearance of formulations that differ in their pharmacological properties become complex the choice of the most appropriate drug to each case. In order to evaluate possible alternatives to restore the effectiveness of MLs on resistant strains of gastrointestinal nematodes, were tested, in this study, ten different treatments based on the MLs on a population of gastrointestinal nematodes of cattle which, known, was under pressure of selection by 1% avermectins. Additionally, was tested a benzimidazole. The efficacy of the drugs was calculated with basis on the reduction of eggs per gram of feces (EPG) of cattle. The resistance of each genus was evaluated by identification of the larvae, obtained from culture in the feces, pre-and post-treatments. The desired efficacy was not obtained using long action avermectins -with high concentration and in association -even with the application of high doses. The genera Cooperia spp., Haemonchus spp. and Trichostrongylus spp. were resistant to avermectins, and Ostertagia spp. to ivermectin. It was observed that, once established parasite resistance to the 1% MLs, the application of drugs, of this same chemical group, even in formulations of high concentration, association or in high doses, may not result in the expected efficacy.
Leishmaniasis is a widely spread and zoonotic disease with serious problems as low effectiveness of drugs, emergence of parasite resistance and severe adverse reactions. In recent years, considerable attention has been given to secondary metabolites produced by Photorhabdus luminescens, an entomopathogenic bacterium. Here, we assessed the leishmanicidal activity of P. luminescens culture fluids. Initially, promastigotes of Leishmania amazonensis were incubated with cell free conditioned medium of P. luminescens and parasite survival was monitored. Different pre-treatments of the conditioned medium revealed that the leishmanicidal activity is due to a secreted peptide smaller than 3 kDa. The Photorhabdus-derived leishmanicidal toxin (PLT) was enriched from conditioned medium and its effect on mitochondrial membrane potential of promastigotes, was determined. Moreover, the biological activity of PLT against amastigotes was evaluated. PLT inhibited the parasite growth and showed significant leishmanicidal activity against promastigote and amastigotes of L. amazonensis. PLT also caused mitochondrial dysfunction in parasites, but low toxicity to mammalian cell and human erythrocytes. Moreover, the anti-amastigote activity was independent of nitric oxide production. In summary, our results highlight that P. luminescens secretes Leishmania-toxic peptide(s) that are promising novel drugs for therapy against leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.