The use of addictive drugs can lead to long-term neuroplastic changes in the brain, including behavioral sensitization, a phenomenon related to addiction. Environmental enrichment (EE) is a strategy used to study the effect of environment on the response to several manipulations, including treatment with addictive drugs. Brain-derived neurotrophic factor (BDNF) has been associated with behaviors related to ethanol addiction. The aim of the present study was to evaluate the effects of EE on ethanol-induced behavioral sensitization and BDNF expression. Mice were exposed to EE and then repeatedly treated with a low dose (1.8 g/kg) of ethanol. Another group of mice was first subjected to repeated ethanol treatment according to the behavioral sensitization protocol and then exposed to EE. Environmental enrichment prevented the development of ethanol-induced behavioral sensitization and blocked behavioral sensitization in sensitized mice. Both repeated ethanol and EE decreased BDNF levels in the prefrontal cortex but not in the hippocampus. However, BDNF levels were lower in ethanol-treated mice exposed to EE. These findings suggest that EE can act on the mechanisms implicated in behavioral sensitization, a model for drug-induced neuroplasticity and relapse. Additionally, EE alters BDNF levels, which regulate addiction-related behaviors.
Families with a BD parent presented more dysfunctional interactions among members. Moreover, the presence of BD or other psychiatric disorders in the offspring of parents with BD is associated with higher levels of control. These results highlight the relevance of psychosocial interventions to improve resilience and family interactions.
White matter (WM) abnormalities have been reported in bipolar disorder (BD) patients, as well as in their non-BD relatives, both children and adults. Although it is considered an emerging vulnerability marker for BD, there are no studies investigating WM alterations in pediatric unmedicated patients and young healthy offspring. In this study, we evaluated the presence of WM alterations in 18 pediatric, non medicated BD patients, as well as in 18 healthy offspring of BD type I parents and 20 healthy controls. 3T DT-MRI data were acquired and scans were processed with tract-based spatial statistics to provide measures of fractional anisotropy and diffusivity. We found no significant differences in WM microstructure between BD patients, healthy offspring and healthy controls. Previous studies that reported WM alterations investigated older subjects, either on medication (BD patients) or with psychiatric diagnoses other than BD (unaffected offspring). Our findings highlight the importance of the understanding of disease ontogeny and brain development dynamics in the search for early vulnerability markers for psychiatric disorders.
a b s t r a c tThe peculiar neurochemical profile of the adolescent brain renders it differently susceptible to several stimuli, including stress and/or drug exposure. Among several stress mediators, nitric oxide (NO) has a role in stress responses. We have demonstrated that adolescent mice are less sensitive to ethanolinduced sensitization than adult mice. The present study investigated whether chronic unpredictable stress (CUS) induces behavioral sensitization to ethanol in adolescent and adult Swiss mice, and investigated the influence of Ca 2þ -dependent nitric oxide synthase (NOS) activity in the phenomenon.Adolescent and adult mice were exposed to repeated 1.8 g/kg ethanol or CUS and challenged with saline or ethanol. A neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7NI), was administered along with ethanol and CUS to test its effects on behavioral sensitization. Both adolescent and adult mice displayed cross-sensitization between CUS and ethanol in adult mice, with adolescents showing a lower degree of sensitization than adults. nNOS inhibition by 7NI reduced both ethanol sensitization and crosssensitization. All age differences in the Ca 2þ -dependent NOS activity in the hippocampus and prefrontal cortex were in the direction of greater activity in adults than in adolescents. Adolescents showed lower sensitivity to cross-sensitization between CUS and ethanol, and the nitric oxide (NO) system seems to have a pivotal role in ethanol-induced behavioral sensitization and cross-sensitization in both adolescent and adult mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.