High-level ab initio calculations using the DLPNO-CCSD(T) method in conjunction with the local energy decomposition (LED) were performed to investigate the nature of the intermolecular interaction in bismuth trichloride adducts with π arene systems. Special emphasis was put on the effect of substituents in the aromatic ring. For this purpose, benzene derivatives with one or three substituents (R = NO 2 , CF 3 , OCHO, OH, and NH 2) were chosen and their influence on donoracceptor interaction as well as on the overall interaction strength was examined. Local energy decomposition was performed to gain deeper insight into the composition of the interaction. Additionally, the study was extended to the intermolecular adducts of arsenic and antimony trichloride with benzene derivatives having one substituent (R = NO 2 and NH 2) in order to rationalize trends in the periodic table. The analysis of natural charges and frontier molecular orbitals shows that donor-acceptor interactions are of π!σ* type and that their strength correlates with charge transfer and orbital energy differences. An analysis of different bonding motifs (Bi•••π arene, Bi•••R, and Cl•••π arene) shows that if dispersion and donoracceptor interaction coincide as the donor highest occupied molecular orbital (HOMO) of the arene is delocalized over the π system, the M•••π arene motif is preferred. If the donor HOMO is localized on the substituent, R•••π arene bonding motifs are preferred. The Cl•••π arene bonding motif is the least favorable with the lowest overall interaction energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.