Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
Recent studies have demonstrated that following estrogen ablation, estrogen responsive breast cancer cells undergo apoptosis. In addition, estrogen receptor (ER) expression has been strongly correlated with the expression of the bcl-2 gene product, p26Bcl-2 protein, which is known to inhibit apoptosis. In the present studies, we investigated whether estrogen affects the intracellular levels of p26Bcl-2 and thereby modulates taxol-induced apoptosis of estrogen responsive human breast cancer MCF-7 cells. Transfer of MCF-7 cells to a culture-medium without estrogens reduced their intracellular p26Bcl-2 levels by 50%. Inclusion of 0.1 microM estradiol in the medium produced approximately a four-fold increase in p26Bcl-2, but not p29Bcl-x1, or p21Bax levels; the expression of the c-myc and mdr-1 genes remained unchanged. Estradiol-induced four-fold increase in the ratio of the p26Bcl-2 to p21Bax levels caused a significant decline in the lethal, kilobase size DNA fragments of apoptosis, which had resulted when MCF-7 cells were cultured in a medium without estrogen. In addition, in MCF-7 cells, estradiol-induced increase in the intracellular p26Bcl-2 to p21Bax ratios was associated with a significant reduction in the large-sized DNA fragmentation induced by treatment with taxol. The increased ratios also protected MCF-7 cells against taxol-mediated cytotoxicity as assessed by the MTT assay. These results suggest that by modulating p26Bcl-2 levels, estrogens may affect the antitumor activity of taxol and potentially of other anti-breast cancer drugs against estrogen responsive human breast cancer cells.
Overexpression of P-glycoprotein (PGP), MRP or LRP has beenproducts have been shown to modulate drug cytotoxicity characterized as the 'proximal', while overexpression of the through a 'distally' operative mechanism which regulates anti-apoptosis Bcl-2 or Bcl-x L relative to the pro-apoptosis Bax drug-induced apoptotic cell death. results also indicate that MRP overexpression does not confer resistance against paclitaxel. In addition, these findings suggest that, for Bcl-2 and Bcl-x L , enforced overexpression to high levels is necessary to induce paclitaxel resistance in HL-60Methods cells.
The antimicrotubule anticancer drug, Taxol, suppresses microtubule dynamics, causes mitotic arrest, and induces caspase-3 cleavage and activity resulting in apoptosis of human AML HL-60 cells. Caspase-3 cleavage is triggered by the mitochondrial release and cytosolic accumulation of the electron transfer protein, cytochrome c (cyt c). Taxol
Recently, high dose Ara-C (HIDAC) has been shown to induce leukemic cell death in vitro by the alternative process of programmed cell death (PCD) or apoptosis which correlates with the inhibition of their clonogenic survival. Since co-treatment with hemopoietic growth facts (HGFs) GM-CSF and IL-3 have been demonstrated to enhance the metabolism and cytotoxic effects of HIDAC against leukemic progenitor cells, we examined the effect of HGFs pIXY 321 (a GM-CSF/IL3 fusion protein) and G-CSF on HIDAC induced PCD and related gene expressions as well as HIDAC mediated colony growth inhibition of human myeloid leukemia cells. Treatment with G-CSF or pIXY 321 alone for up to 24 hours neither suppressed nor induced PCD in HL-60 or KG-1 cells. However, exposure to either of the HGFs for 20 hours followed by a combined treatment for 4 hours with HIDAC plus either of the HGFs versus HIDAC alone significantly enhanced the intracellular Ara-CTP accumulation and the oligonucleosomal DNA fragmentation characteristic of PCD. This was temporally associated with a marked induction of C-jun expression but a significant repression in BCL-2 and c-myc expressions. In addition, the treatment with either of the HGFs plus HIDAC versus HIDAC alone produced a significantly greater inhibition of the clonogenic survival of the myeloid leukemia cells. These findings underscore an additional mechanism of leukemic cell death induced by HIDAC which can be modulated by the HGFs to improve the antileukemic activity of HIDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.