1-Acyl thioureas [RC(O)NHC(S)NRR] are shown to display conformational flexibility depending on the degree of substitution at the nitrogen atom. The conformational landscape and structural features for two closely related thioureas having R=2-furoyl have been studied. The un-substituted 2-furoyl thiourea (I) and its dimethyl analogue, i.e. 1-(2-furoyl)-3,3-dimethyl thiourea (II), have been synthesized and fully characterized by spectroscopic (FT-IR, H andC NMR) and elemental analysis. According to single crystal X-ray diffraction analysis, compounds I and II crystallize in the monoclinic space group P21/c. In the compound I, the trans-cis geometry of the almost planar thiourea unit is stabilized by intramolecular NH⋯OC hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In compound II, however, the acyl thiourea group is non-planar, in good agreement with the potential energy curve computed at the B3LYP/6-31+G(d,p) level of approximation. Centrosymmetric dimers generated by intermolecular NH⋯SC hydrogen bond forming R(8) motif are present in the crystals. Intermolecular interactions have been rationalized in terms of topological partitions of the electron distributions and Hirshfeld surface analysis, which showed the occurrence of S⋯H, O⋯H and H⋯H contacts that display an important role to crystal packing stabilization of both thiourea derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.