Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain.
The transcription factor NF-kappaB is a regulator of cell death or survival. To investigate the role of NF-kappaB in neuronal cell death, we studied its activation in a rodent model of stroke. In the ischemic hemisphere, NF-kappaB was activated, as determined by increased expression of an NF-kappaB-driven reporter transgene, nuclear translocation of NF-kappaB in neurons and enhanced DNA binding of NF-kappaB subunits RelA and p50. In p50 knockout mice, ischemic damage was significantly reduced. This indicates a cell death-promoting role of NF-kappaB in focal ischemia. NF-kappaB may provide a new pharmacological target in neurologic disease.
Highlights d Time-dependent stem cell depletion levels off in the old brain via increased quiescence d Age minimally changes the neural stem cell transcriptome d Once-activated neural stem cells perform similar in the old and young brain d The old niche keeps stem cells quiescent via inflammation and Wnt activity regulation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.