For several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes. It is thought that the association between cancer and satncRNAs is mostly due to the influence of these transcripts in the genome instability, a hallmark of cancer. The few reports on satellite DNA transcription in cancer contexts point to its overexpression; however, this scenario may be far more complex, variable, and influenced by a number of factors and the exact role of satncRNAs in the oncogenic process remains poorly understood. The greater is the knowledge on the association of satncRNAs with cancer, the greater would be the opportunity to assist cancer treatment, either by the design of effective therapies targeting these molecules or by using them as biomarkers in cancer diagnosis, prognosis, and with predictive value.
In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.