Objectives To analyse the characteristics and predictors of death in hospitalized patients with coronavirus disease 2019 (COVID-19) in Spain. Methods A retrospective observational study was performed of the first consecutive patients hospitalized with COVID-19 confirmed by real-time PCR assay in 127 Spanish centres until 17 March 2020. The follow-up censoring date was 17 April 2020. We collected demographic, clinical, laboratory, treatment and complications data. The primary endpoint was all-cause mortality. Univariable and multivariable Cox regression analyses were performed to identify factors associated with death. Results Of the 4035 patients, male subjects accounted for 2433 (61.0%) of 3987, the median age was 70 years and 2539 (73.8%) of 3439 had one or more comorbidity. The most common symptoms were a history of fever, cough, malaise and dyspnoea. During hospitalization, 1255 (31.5%) of 3979 patients developed acute respiratory distress syndrome, 736 (18.5%) of 3988 were admitted to intensive care units and 619 (15.5%) of 3992 underwent mechanical ventilation. Virus- or host-targeted medications included lopinavir/ritonavir (2820/4005, 70.4%), hydroxychloroquine (2618/3995, 65.5%), interferon beta (1153/3950, 29.2%), corticosteroids (1109/3965, 28.0%) and tocilizumab (373/3951, 9.4%). Overall, 1131 (28%) of 4035 patients died. Mortality increased with age (85.6% occurring in older than 65 years). Seventeen factors were independently associated with an increased hazard of death, the strongest among them including advanced age, liver cirrhosis, low age-adjusted oxygen saturation, higher concentrations of C-reactive protein and lower estimated glomerular filtration rate. Conclusions Our findings provide comprehensive information about characteristics and complications of severe COVID-19, and may help clinicians identify patients at a higher risk of death.
Background The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality. MethodsIn this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model. Findings Three distinct phenotypes were derived in the derivation cohort (n=2667)-phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])-and reproduced in the internal validation cohort (n=1368)phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2•5% (95% CI 1•4-4•3) for patients with phenotype A, 30•5% (28•5-32•6) for patients with phenotype B, and 60•7% (53•7-67•2) for patients with phenotype C (log-rank test p<0•0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5•3% [95% CI 3•4-8•1] for phenotype A, 31•3% [28•5-34•2] for phenotype B, and 59•5% [48•8-69•3] for phenotype C; external validation cohort: 3•7% [2•0-6•4] for phenotype A, 23•7% [21•8-25•7] for phenotype B, and 51•4% [41•9-60•7] for phenotype C).Interpretation Patients admitted to hospital with COVID-19 can be classified into three...
The coronavirus disease 2019 (COVID-19) pandemic has affected the world radically since 2020. Spain was one of the European countries with the highest incidence during the first wave. As a part of a consortium to monitor and study the evolution of the epidemic, we sequenced 2,170 samples, diagnosed mostly before lockdown measures. Here, we identified at least 500 introductions from multiple international sources and documented the early rise of two dominant Spanish epidemic clades (SECs), probably amplified by superspreading events. Both SECs were related closely to the initial Asian variants of SARS-CoV-2 and spread widely across Spain. We inferred a substantial reduction in the effective reproductive number of both SECs due to public-health interventions ( R e < 1), also reflected in the replacement of SECs by a new variant over the summer of 2020. In summary, we reveal a notable difference in the initial genetic makeup of SARS-CoV-2 in Spain compared with other European countries and show evidence to support the effectiveness of lockdown measures in controlling virus spread, even for the most successful genetic variants.
This study aimed to determine the prevalence of onychomycosis and interdigital tinea pedis in a cohort of Spanish patients with diabetes in whom onychomycosis was clinically suspected (n = 101). Samples from a first toenail scraping and the fourth toe clefts were subjected to potassium hydroxide direct vision and incubated in Sabouraud and dermatophyte test medium. Fifty-eight samples were also analyzed by a pathologist using periodic acid-Schiff staining and Calcofluor white direct fluorescence microscopy. Onychomycosis was only confirmed in 41 patients (40.6%). The most frequent aetiological agent was Trichophyton rubrum, isolated in 10 patients (36%), followed by Candida parapsilosis in 7 patients (25%). Tests on the fourth toe cleft samples were only positive in 11 patients (10.9%), and in all cases, onychomycosis was also diagnosed. Neuroischemic foot was the only significant variable associated with onychomycosis in the univariate analysis ( P < .01). A positive result for mycosis in the fourth toe cleft was found in 11 cases (10.9%) and was associated with a history of myocardial infarction ( P< .01; odds ratio [OR]: 84.2, confidence interval [CI]: 6.8-1036.4) and neuroischemic foot ( P< .01; OR: 13.7, CI: 12.6-71.6) in the multivariate model. In conclusion, the prevalence of onychomycosis and tinea pedis in patients with diabetes in whom onychomycosis was clinically suspected was 40.6% and 10.9%, respectively. In addition, onychomycosis was not always associated with tinea pedis. These results show that clinical diagnosis has low accuracy in people with diabetes mellitus, and that diagnosis should not be based on clinical toenail characteristics alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.