The poor prognosis of most cases of advanced cholangiocarcinoma (CCA) constitutes a severe problem in modern oncology, which is aggravated by the fact that the incidence of this liver cancer is increasing worldwide and is often diagnosed late, when surgical removal is not feasible. The difficulty of dealing with this deadly tumor is augmented by the heterogeneity of CCA subtypes and the complexity of mechanisms involved in enhanced proliferation, apoptosis avoidance, chemoresistance, invasiveness, and metastasis that characterize CCA. Among the regulatory processes implicated in developing these malignant traits, the Wnt/β-catenin pathway plays a pivotal role. Alteration of β-catenin expression and subcellular localization has been associated with worse outcomes in some CCA subtypes. This heterogeneity, which also affects cellular and in vivo models commonly used to study CCA biology and anticancer drug development, must be taken into account for CCA investigation to more accurately extrapolate basic laboratory research to the clinical situation. A better understanding of the altered Wnt/β-catenin pathway in relationship with the heterogeneous forms of CCA is mandatory for developing novel diagnostic tools and therapeutic strategies for patients suffering from this lethal disease.
Normal hepatobiliary function depends on an adequate bile flow from the liver through the biliary tree to the gallbladder, where bile is stored and concentrated, and from the gallbladder to the duodenum when it is required for the digestive process. Interruption of this secretory function results in partial or complete cholestasis, which is accompanied by important repercussions due to the lack of bile acids in the intestine and their regurgitation from hepatocytes to blood together with potentially toxic compounds that are normally eliminated in bile. The presence of active and selective transporter proteins located at both poles of the plasma membrane of hepatocytes, cholangiocytes, and epithelial cells of the ileal mucosa, together with the ability of hepatocytes to synthesize bile acids from cholesterol, enables the so-called bile acid enterohepatic circulation, which is essential in liver and gastrointestinal tract physiology. The presence in the ducts of the biliary tree of agents reducing their luminal diameter by external compression or space-occupying obstacles, either in the duct wall or its lumen, can result in total or partial obstructive cholestasis. The clinical impact and management of cholestasis are different depending on the intrahepatic or extrahepatic location of the obstacle. Thus, surgical interventions can often be helpful in removing extrahepatic obstructions and restoring normal bile flow to the duodenum. In contrast, hepatocyte or cholangiocyte damage, either global, restricted to subcellular compartments, or more specifically affecting the elements of the canalicular secretory machinery, may result in hepatocellular cholestasis or cholangiopathies. In these cases, bile flow interruption is usually partial and, except for extremely severe cases when liver transplantation is required, these patients often treated with pharmacological agents, such as ursodeoxycholic acid (UDCA) and rifampicin. The present review gathers updated information on the etiopathogenesis and pathophysiological aspects of different types of cholestasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.