Rarefaction waves and dispersive shock waves are generated from the step-like initial data in many nonlinear evolution equations including the classical example of the Korteweg–de Vries (KdV) equation. When a solitary wave is injected on the step-like initial data, it is either transmitted over or trapped inside the rarefaction wave background. We show that the transmitted soliton can be obtained by using the Darboux transformation for the KdV equation. On the other hand, we show with the help of numerical simulations that the trapped soliton disappears in the long-time dynamics of the rarefaction wave.
Using the Darboux transformation for the Korteweg-de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.