Three-dimensional printing was found to be helpful for all 4 craniofacial surgeons, who would all invest again in a 3D printer. For lower volume centers, commercially printed models may be a more cost-effective alternative.
Susceptibility artifacts caused by stainless steel orthodontic appliances (braces) pose significant challenges in clinical brain MRI examinations. We introduced field correction device (FCD) utilizing permanent magnets to cancel the induced B0 inhomogeneity and mitigate geometric distortions in MRI. We evaluated a prototype FCD using a 3D-printed head phantom in this proof of concept study. The phantom was compartmented into anterior frontal lobe, temporal lobe, fronto-parieto-occipital lobe, basal ganglia and thalami, brain stem, and cerebellum and had built-in orthogonal gridlines to facilitate the quantification of geometric distortions and volume obliterations. Stainless steel braces were mounted on dental models of three different sizes with total induced magnetic moment 0.15 to 0.17 A·m2. With braces B0 standard deviation (SD) ranged from 2.8 to 3.7 ppm in the temporal and anterior frontal lobes vs. 0.2 to 0.3 ppm without braces. The volume of brain regions in diffusion weighted imaging was obliterated by 32–38% with braces vs. 0% without braces in the cerebellum. With the FCD the SD of B0 ranged from 0.3 to 1.2 ppm, and obliterated volume ranged from 0 to 6% in the corresponding brain areas. These results showed that FCD can effectively decrease susceptibility artifacts from orthodontic appliances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.