Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL(3)), 6 h, or 24 h (oxLDL(24))] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL(24) was endocytosed both by LSECs and KCs, oxLDL(3) (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL(24), suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL(3) on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL.
Liver sinusoidal endothelial cells (LSECs) play an essential role in systemic waste clearance by effective endocytosis of blood-borne waste macromolecules. We aimed to study LSECs' scavenger function during aging, and whether age-related morphological changes (eg, defenestration) affect this function, in F344/BN F1 rats. Endocytosis of the scavenger receptor ligand formaldehyde-treated serum albumin was significantly reduced in LSECs from old rats. Ligand degradation, LSEC protein expression of the major scavenger receptors for formaldehyde-treated serum albumin endocytosis, stabilin-1 and stabilin-2, and their staining patterns along liver sinusoids, was similar at young and old age, suggesting that other parts of the endocytic machinery are affected by aging. Formaldehyde-treated serum albumin uptake per cell, and cell porosity evaluated by electron microscopy, was not correlated, indicating that LSEC defenestration is not linked to impaired endocytosis. We report a significantly reduced LSEC endocytic capacity at old age, which may be especially important in situations with increased circulatory waste loads.
The existence of a bone marrow (BM) niche--the location in which hematopoietic stem cells (HSCs) reside--was proposed more than 30 years ago. Recent data suggest that the interaction of HSCs with cellular and extracellular components within the BM is critical for HSC regulation. The tracking of immunofluorescently labeled, prospectively isolated HSCs to and within the BM cavity allows the assessment of the regulatory processes involved in (1) homing, which involves transendothelial migration into the BM; (2) lodgment, including transmarrow migration through the extravascular space; and (3) BM reconstitution. Together, such analyses provide a better understanding of the cellular and extracellular components involved in the regulation of HSC quiescence and differentiation. Homing and lodgment of transplanted HSCs, the first critical steps in engraftment, involve multiple interactions between HSCs and the BM microenvironment. Herein, we describe a refined method of analyzing homing efficiency and spatial distribution of HSCs harvested from endosteal and/or central BM regions; we also review alternate methods. Using these techniques, microenvironment modifications within the recipient or surface protein-expression modifications on donor HSCs in animal models provide insights into components influencing the homing, lodgment, and engraftment processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.