Dietary fiber extracted from soybean and chickpea husks was used in the formulation of white bread. Treatments at different concentrations of dietary fiber (DF): bread + 0.15%, 0.3%, 1.5%, 2% soybean dietary fiber (SDF); bread + 0.15%, 0.3%, 1.5%, 2% chickpea dietary fiber (CDF), and a control treatment (Bread 0% DF) were used initially. However, the treatments that showed the greatest improvement effects were: bread + 2% SDF and bread + 2% CDF. The functionality and the nutritional contribution in the treatments were evaluated during four days of storage. The weight loss on the third day of storage was 30% higher in the control treatment than the products with 2% SDF and 2% CDF, while for the evaluation of firmness, the control obtained a hardness of 86 N, and treatments with 2% SDF and 2% CDF 60 N and 45 N, respectively. The presence of phenolic compounds and their antioxidant activity was evident, mainly in the 2% SDF treatment, which had a total phenolic content of 1036, while in the Bread 0% DF it was 232 mgEAC/kg. The antioxidant activity for 2% SDF by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (3-ethyl-benzothiazoline-6-sulfonic acid), and FRAP (ferric reducing antioxidant power) was 1096, 2567, and 1800 µmolTE/kg, respectively. Dietary fiber addition favored the reduction of weight loss and firmness of white bread during storage. In addition, color was not affected and the content calcium, phenolics, as well as antioxidant capacity were slightly improved.
The objective of the present study was to evaluate the effect of dietary fiber from soybean (glycine max) husk as fat and phosphate replacer on the nutritional, physicochemical, and nutraceutical quality of Frankfurter sausage. A traditional formulation was used for the pork-based sausage and three treatments were established: control treatment (CT), sausage without SHDF; treatment 1 (T1), sausage and 1% SHDF; treatment 2 (T2), sausage and 1.5% SHDF. T2 showed the best nutritional contribution of the treatments, significantly favoring a lower content of fat and sodium, thus increasing the contribution of dietary fiber and calcium. A positive effect of SHDF on the water-holding capacity of the treatments was also observed. In addition, T2 remained stable during storage, while T1 and CT showed significantly reduced water-holding capacities of approximately 5%; this was in turn linked to hardness, as it was observed that on day 7 of storage, 27% less force was required to deform the T2 sausages. Regarding color, no significant difference was observed with the addition of SHDF to the product. The results suggest that the dietary fiber extracted from soybean husks has potential for application in food and can be used as an ingredient to improve the functional and nutritional quality of Frankfurter sausages by reducing the content of fat and phosphates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.