antibody-dependent enhancement ͉ nonhuman primate model ͉ Fc mutations ͉ cross-reactive mAb T he four dengue virus (DENV) serotypes (DENV-1 to DENV-4) are the most important arthropod-borne flaviviruses in terms of morbidity and geographic distribution. Up to 100 million DENV infections occur every year, mostly in tropical and subtropical areas where vector mosquitoes are abundant (1). Infection with any of the DENV serotypes may be asymptomatic or may lead to classic dengue fever or more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which are increasingly common in the dengue endemic areas. Immunity to the same virus serotype (homotypic immunity) is life-long, whereas immunity to different serotypes (heterotypic immunity) lasts 2-3 months so that infection with a different serotype virus is possible (2). DHF/DSS often occurs in patients with second, heterotypic DENV infections or in infants with maternally transferred dengue immunity (3, 4). Severe dengue is a major cause of hospitalization, and fatality rates vary from Ͻ1% to 5% in children.Antibody-dependent enhancement (ADE) has been proposed as an underlying pathogenic mechanism of DHF/DSS (3). ADE occurs because preexisting subneutralizing antibodies and the infecting DENV form complexes that bind to Fc receptorbearing cells, leading to increased virus uptake and replication (4). ADE has been repeatedly demonstrated in vitro using dengue immune sera or monoclonal antibodies and cells of monocytic and recently, B lymphocytic lineages bearing Fc receptors (5-7). ADE of DENV-2 infection has also been demonstrated in monkeys infused with a human dengue immune serum (8).Infection with DENV or any other flavivirus induces broadly cross-reactive but weak or nonneutralizing antibodies (9, 10). These antibodies remain detectable for a long period and rise rapidly during a subsequent heterotypic infection as a result of an anamnestic response. A major subset of these cross-reactive antibodies is directed to immuno-dominant epitopes involving determinants mapped to the flavivirus-conserved fusion peptide in the envelope glycoprotein (E) (11-13). The functional activities of these cross-reactive antibodies are not well characterized.We have identified chimpanzee-human chimeric IgG1 mAbs capable of neutralizing or binding to one or more DENV serotypes (14, 15). Cross-reactive IgG 1A5 neutralizes DENV-1 and DENV-2 more efficiently than DENV-3 and DENV-4, and type-specific IgG 5H2 neutralizes DENV-4 at a high titer (14,15). Analysis of antigenic variants has localized the IgG 1A5 binding site to the conserved fusion peptide in E (11). Thus, IgG 1A5 shares many characteristics with the cross-reactive antibodies detected in flavivirus infections.We investigated the ability of IgG 1A5 to mediate enhancement of DENV replication in monocyte-derived cell lines and in juvenile rhesus monkeys after passive transfer. We also explored strategies to reduce ADE by mutational analysis of the key structures in the Fc of IgG 1A5. A 9-aa deletion at the N termin...
The genetic diversity and phylogenetic relationships of a collection of strains of dengue virus type 1 (DV-1), isolated from different parts of the world, were investigated. Phylogenetic trees derived from the complete sequence of the E gene of 44 strains suggested the existence of five genetic types defined by a maximum nucleotide divergence within each group of 6%. The 22 strains from America were classified into a single genetic type that included strains associated either with classical dengue or hemorrhagic dengue episodes. Using a maximum likelihood procedure based on a single rate with dated tips model and substitution rates calculated at the third codon position, evolution of the five DV-1 genotypes was shown to conform to a molecular clock. The average rate of evolution was estimated to be approximately 16.2 x 10(-4) substitutions/third codon position site/year. Using this estimate, divergence among the DV-1 genotypes was calculated to have occurred approximately 100 years ago. Very low average value of the ratio of nonsynonymous-to-synonymous nucleotide substitutions, relative to the respective sites (0.046), indicated that the evolution of the E gene of the DV-1 is subject mostly to purifying selection.
The epitope determinants of chimpanzee Fab antibody 1A5, which have been shown to be broadly reactive to flaviviruses and efficient for cross-neutralization of dengue virus type 1 and type 2 (DENV-1 and DENV-2), were studied by analysis of DENV-2 antigenic variants. Sequence analysis showed that one antigenic variant contained a Gly-to-Val substitution at position 106 within the flavivirus-conserved fusion peptide loop of the envelope protein (E), and another variant contained a His-to-Gln substitution at position 317 in E. Substitution of Gly 106 Val in DENV-2 E reduced the binding affinity of Fab 1A5 by approximately 80-fold, whereas substitution of His 317 Gln had little or no effect on antibody binding compared to the parental virus. Treatment of DENV-2 with -mercaptoethanol abolished binding of Fab 1A5, indicating that disulfide bridges were required for the structural integrity of the Fab 1A5 epitope. Binding of Fab 1A5 to DENV-2 was competed by an oligopeptide containing the fusion peptide sequence as shown by competition enzyme-linked immunosorbent assay. Both DENV-2 antigenic variants were shown to be attenuated, or at least similar to the parental virus, when evaluated for growth in cultured cells or for neurovirulence in mice. Fab 1A5 inhibited low pH-induced membrane fusion of mosquito C6/36 cells infected with DENV-1 or DENV-2, as detected by reduced syncytium formation. Both substitutions in DENV-2 E lowered the pH threshold for membrane fusion, as measured in a fusion-from-within assay. In the three-dimensional structure of E, Gly 106 in domain II and His 317 in domain III of the opposite E monomer were spatially close. From the locations of these amino acids, Fab 1A5 appears to recognize a novel epitope that has not been mapped before with a flavivirus monoclonal antibody.The four dengue virus serotypes (DENV-1 to DENV-4) constitute the dengue virus complex within the Flavivirus genus of the Flaviviridae. Dengue outbreaks and epidemics continue to pose a public health problem in most tropical and subtropical countries. Dengue illnesses range from mild dengue fever to severe dengue, characterized by dengue hemorrhagic fever and dengue shock syndrome, which has a high mortality rate. According to one estimate, approximately 50 to 100 million dengue virus infections and up to 250,000 dengue hemorrhagic fever cases occur every year worldwide (12, 34). Despite six decades of research, a safe and effective dengue vaccine has not been developed, nor is a specific, short-term preventive measure available. Currently, prevention of dengue is carried out by mosquito vector control, which is rather ineffective. Several other arthropod-borne flaviviruses are also important human pathogens, including the yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), and West Nile virus (WNV), which has recently emerged in North America (23,25). Vaccines against all of these viruses except WNV have been developed.The flavivirus genome contains a positive-strand RNA with one ...
The four serotypes of dengue virus (DENV-1 to -4) cause the most important emerging viral disease. Protein E, the principal viral envelope glycoprotein, mediates fusion of the viral and endosomal membranes during virus entry and is the target of neutralizing antibodies. However, the epitopes of strongly neutralizing human antibodies have not been described despite their importance to vaccine development. The chimpanzee Mab 5H2 potently neutralizes DENV-4 by binding to domain I of E. The crystal structure of Fab 5H2 bound to E from DENV-4 shows that antibody binding prevents formation of the fusogenic hairpin conformation of E, which together with in-vitro assays, demonstrates that 5H2 neutralizes by blocking membrane fusion in the endosome. Furthermore, we show that human sera from patients recovering from DENV-4 infection contain antibodies that bind to the 5H2 epitope region on domain I. This study, thus, provides new information and tools for effective vaccine design to prevent dengue disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.