Bacterial growth models are commonly used for the prediction of microbial safety and the shelf life of perishable foods. Growth is affected by several environmental factors such as temperature, acidity level and salt concentration. In this study, we develop two models to describe bacterial growth for multiple populations under both equal and different environmental conditions. First, a semiparametric model based on the Gompertz equation is proposed. Assuming that the parameters of the Gompertz equation may vary in relation to the running conditions under which the experiment is performed, we use feedforward neural networks to model the influence of these environmental factors on the growth parameters. Second, we propose a more general model which does not assume any underlying parametric form for the growth function. Thus, we consider a neural network as a primary growth model which includes the influencing environmental factors as inputs to the network. One of the main disadvantages of neural networks models is that they are often very difficult to tune, which complicates fitting procedures. Here, we show that a simple Bayesian approach to fitting these models can be implemented via the software package WinBugs. Our approach is illustrated using real experimental Listeria monocytogenes growth data.
We introduce a new stochastic model for non-decreasing processes which can be used to include stochastic variability into any deterministic growth function via subordination. This model is useful in many applications such as growth curves (children's height, fish length, diameter of trees, etc) and degradation processes (crack size, wheel degradation, laser light, etc). One advantage of our approach is to be able to easily deal with data that are irregularly spaced in time or different curves that are observed at different moments of time. With the use of simulations and applications, we examine two approaches to Bayesian inference for our model: the first based on a Gibbs sampler and the second based on approximate Bayesian computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.