SUMMARY:Paper based supercapacitors are prepared by stacking a paper between two graphene electrodes and soaking these in an aqueous electrolyte. We demonstrate that supercapacitors can easily be manufactured by using proven paper technologies. Several different electrode materials were compared and two types of contacting material, silver and graphite foil were tested. The influence of the paper used as separator was also investigated.The supercapacitors with a graphene-gold nanoparticle composite as electrodes showed a specific capacitance of up to 100 F/g and an energy density of 1.27 Wh/kg. The energy density can further be increased by using other electrolytes. The silver contacts showed a pseudo capacitance, which the graphite contacts did not. The papers tested had a minor effect on the capacitance, but they have an influence on the weight and the volume of the supercapacitor. ADDRESSES OF THE AUTHORS
We developed a straightforward, robust, and relatively fast method for the analysis of amino acids by mixed-mode high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The method does not involve derivatization and allows the detection of 21 amino acids, representing a wide range of isoelectric points, in less than 40 min. Chromatographic separation was governed by a silica-based mixed-mode column providing simultaneous hydrophobic and ion exchange separation mechanisms. The use of tandem mass spectrometry increased selectivity, reducing potential problems associated with poor selectivity in the chromatographic system. For an injection volume of 1 μL, we obtained detection limits <3 μM for the majority of analytes. For all analytes, a linearity of r > 0.99 was obtained, recovery in matrix was >86%, and the retention times were highly reproducible. The method was successfully applied to soil solution and fungal culture samples, demonstrating the advantages in successfully avoiding issues associated with high amounts of substances that may interfere with derivatization-based methods. This method represents an alternative to derivatization-based methods and can be applied in areas where sample matrices are highly complex.
The contamination of soils by petroleum hydrocarbons, such as diesel fuel, has since many years been a serious environmental problem. Treatment of contaminated areas is a concern for governments and environmental authorities in several countries and efforts have been done with the purpose to eliminate this problem. Different methods have been tested and today the most common technique involves the excavation and transportation of contaminated soil to special treatment facilities. In earlier studies we have demonstrated the effect of adding organic amendments, such as fermented whey, on the biodegradation of n-alkanes in diesel contaminated soil. Non-fermented sweet whey also proved significantly to enhance the biodegradation of an aromatic substance (phenanthrene) in contaminated soil. The current paper presents the results of an in-situ field test at a former gas station in the north of Sweden. In parallel to the field study, biodegradation profiles were monitored under controlled laboratory conditions by taking soil samples from the contaminated site and spike them with diesel fuel. The experiments were carried out by adding whey and mineral nutrients (NPK) to the test area and to the laboratory samples, and monitor the degradation of hydrocarbons by gas chromatographic analysis of extracted soil samples. Significant effects on the degradation rates were achieved in the laboratory tests. For the in-situ test, however, no such positive effects could be registered.
Environmental contextSpreading recycled wood ash in forests may counteract acidification and nutrient losses, but the process may also affect symbiotic fungi in these eco-systems. We show how fungal species react when exposed to ash solutions; for example, by an increased release of organic acids and other compounds. These effects can influence pH and metal availability in forest soils treated with ash. AbstractRecycling of wood ash may counteract acidification and losses of base cations resulting from whole-tree harvesting in boreal forest ecosystems. The effects of ash treatment on growth and exudation of eight ectomycorrhizal fungal species were investigated in this study. Six basidiomycetes and two ascomycetes were grown in liquid pure culture with different levels of ash amendments. Biomass production, pH and the exudation of 17 low-molecular-mass organic acids (LMMOAs), 23 amino acids (AAs) and 9 hydroxamate siderophores (HSs) were recorded after 1, 2 and 4 weeks of incubation. Ash did not affect fungal growth, but resulted in higher exudation of the investigated compounds, in particular LMMOAs. Ash also influenced the composition of the exudates. We measured exudation of LMMOAs and AAs up to millimolar and micromolar concentrations respectively. For example, Rhizopogon roseolus mainly produced oxalic acid, whereas Lactarius rufus and Tomentellopsis submollis produced the highest concentrations of AAs. Ferricrocin, the only HS detected, was exuded at the nanomolar level. Exudation responses were also highly species-dependent, e.g. the ascomycetous isolates that produced the largest biomass released low amounts of exudates compared with the basidiomycetes, and were the only ones producing siderophores. This growth–exudation response to ash is likely a trade-off in carbon allocation whereby the mycorrhizal fungal species invest carbon in either higher biomass production or higher exudation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.