The production of prostaglandins (PGs) during fungal infections could be an important suppressor factor of host immune response. Host cells are one source of prostaglandin E(2) (PGE(2)); however another potential source of PGE(2) is the fungal pathogen itself. Thus, both host and fungal PGE2 production is theorized to play a role in pathogenesis, being critical for growth of the fungus and to modulate the host immune response. The purpose of this work was to investigate if high and low virulent strains of Paracoccidioides brasiliensis have the capacity to produce PGE(2) in vitro, and if this production was related to the fungal growth. The results demonstrated that both strains of P. brasiliensis produce high levels of PGE(2) and the treatment with indomethacin, a cyclooxygenase inhibitor, significantly reduced the production of this mediator, as well as the viability of the fungus. Thus, our data indicate that PGE(2) is produced by P. brasiliensis by a cyclooxygenase-dependent metabolic pathway, and its production is required for fungal survival. This discovery reveals an important factor that has potentially great implications for understanding the mechanisms of immune deviation during infection.
Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against this fungus, and several studies have shown the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, studies on polymorphonuclear neutrophils (PMNs), that are the first cells recruited to the infection sites, are scarcer. Thus, the objective of this paper was to assess whether interleukin-10 (IL-10), a potent anti-inflammatory cytokine, is able to block the activity of IFN-gamma-activated human PMNs upon P. brasiliensis intracellular killing, in vitro. The results showed that IFN-gamma-activated PMNs have an effective fungicidal activity against the fungus. This activity was associated with the release of high levels of H(2)O(2), the metabolite involved in phagocytic cells antifungal activities. However, the concomitant incubation of these cells with IFN-gamma and IL-10 significantly blocked IFN-gamma activation. As a consequence, PMNs killing activity and H(2)O(2) release were inhibited. Together, our results show the importance of PMNs exposure to activator or suppressor cytokines in the early stages of paracoccidioidomycosis infection.
Chloroquine, due to its basic properties, has been shown to prevent the release of iron from holotransferrin, thereby interfering with normal iron metabolism in a variety of cell types. We have studied the effects of chloroquine on the evolution of experimental paracoccidioidomycosis by evaluating the viable fungal recovery from lung, liver and spleen from infected mice and H(2)O(2), NO production, tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-10 levels and transferrin receptor (TfR) expression from uninfected and infected peritoneal macrophages. Chloroquine caused a significant decrease in the viable fungal recovery from all organs tested, during all periods of evaluation. Peritoneal macrophages from chloroquine-treated infected mice showed higher H(2)O(2) production and TfR expression, and decreased levels of NO, endogenous and stimulated-TNF-alpha, IL-6 and IL-10 during the three evaluated periods. However, despite its suppressor effects on the macrophage function, the chloroquine therapeutic effect upon murine paracoccidioidomycosis was probably due to its effect on iron metabolism, blocking iron uptake by cells, and consequently restricting iron to fungus growth and survival.
Pesq. Vet. Bras. 34(1):51-56, janeiro 2014 51 hepcidina em equinos.] A hipoferremia observada durante os processos inflamatórios sistêmicos é mediada pela hepcidina. O aumento da expressão da hepcidina é particularmente importante durante a inflamação aguda, por restringir a disponibilidade de ferro necessária para o crescimento de microrganismos patogênicos antes que a imunidade adaptativa ocorra. O objetivo deste estudo foi avaliar os achados clí-nicos e a expressão hepática do RNA mensageiro (RNAm) da hepcidina em cavalos após a indução da inflamação com Adjuvante completo de Freund (FCA). A expressão hepática do RNAm da hepcidina foi determinada em cavalos sadios após duas administrações intramusculares de FCA às 0 h (M0) e 12 h (M12 Hypoferremia observed during systemic inflammatory disorders is regulated by hepcidin. Hepcidin up-regulation is particularly important during acute inflammation, as it restricts the availability of iron, which is necessary for pathogenic microorganism growth before adaptive immunity occurs. The aim of this study was to evaluate the clinical findings and hepatic hepcidin mRNA expression in horses using a Freund's complete adjuvant (FCA) model of inflammation. The expression of hepcidin mRNA in the liver was determined in healthy horses following two intramuscular injections of FCA at 0 h and 12 h. Plasma iron and fibrinogen concentrations were measured at multiple time points between 0 h and 240 h post-FCA injection (PI). Hepcidin mRNA expression was determined by RT-qPCR using liver biopsy samples performed at 0 h (control), 6 h and 18 h PI. The mean plasma fibrinogen level was significantly different from the control values only between 120 and 216 h PI. The mean plasma iron level was significantly lower than the control between 16 and 72 h PI, reaching the lowest levels at 30 h PI (33 % of the initial value), and returned to the reference value from 96 h PI to the end of the experiment. Hepcidin mRNA expression increased at 6 h PI and remained high at 18 h PI. The iron plasma concentration was an earlier indicator of inflammatory processes in horses when compared with fibrinogen and might be useful for the early detection of inflammation in the horse. FCA administration caused the rapid onset of hypoferremia, and this effect was likely the result of up-regulated hepatic hepcidin gene expression. This study emphasizes the importance of hepcidin and iron metabolism during inflammation in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.