Ashes from sugarcane by-product incineration were used to synthesize silica powders through alkaline hot extraction, followed by ethanol/acid precipitation or the sol–gel method. Both production methods allowed amorphous spherical silica microparticles with sizes ranging from 1–15 μm and 97% purity to be obtained. Water absorption ranged from 135–155 mL/100 g and 150–250 mL/100 g for precipitated silica and silica gel, respectively, while oil absorption ranged from 305 to 390 and from 250 to 350 mL/100 g. The precipitation with ethanol allowed the recovery of 178 g silica/kg ash, with a lab process cost of EUR 28.95/kg, while the sol-gel process showed a yield of 198 g silica/kg ash with a cost of EUR 10.89/kg. The experimental data suggest that ash from sugarcane by-products is a promising source to be converted into a competitive value-added product, minimizing the environmental impact of disposal problems.
In the last decade, selectively tuned bio-based polyesters have been increasingly used for their clinical potential in several biomedical applications, such as tissue engineering, wound healing, and drug delivery. With a biomedical application in mind, a flexible polyester was produced by melt polycondensation using the microbial oil residue collected after the distillation of β-farnesene (FDR) produced industrially by genetically modified yeast, Saccharomyces cerevisiae. After characterization, the polyester exhibited elongation up to 150% and presented Tg of −51.2 °C and Tm of 169.8 °C. In vitro degradation revealed a mass loss of about 87% after storage in PBS solution for 11 weeks under accelerated conditions (40 °C, RH = 75%). The water contact angle revealed a hydrophilic character, and biocompatibility with skin cells was demonstrated. 3D and 2D scaffolds were produced by salt-leaching, and a controlled release study at 30 °C was performed with Rhodamine B base (RBB, 3D) and curcumin (CRC, 2D), showing a diffusion-controlled mechanism with about 29.3% of RBB released after 48 h and 50.4% of CRC after 7 h. This polymer offers a sustainable and eco-friendly alternative for the potential use of the controlled release of active principles for wound dressing applications.
There is a great interest in replacing conventional fossil-based polymers and composites with inorganic or organic waste-based materials and filler-type additives, to promote environmental sustainability and circularity. The main objective of this study was the design of water-blown polyurethane rigid foams integrating two by-products derived from the Amyris fermentation process of production of β-farnesene. The distillation residue (FDR) was used as main polyol component in the neat formulation of the foams (PF) that it was supplemented (PFA) with 4.5% of sugarcane bagasse ash (SCBA) added as a filler with fire-retardant properties. The impact of both by-products on the foam density and morphology, and in the thermal, mechanical, and flame-retardant properties was assessed. SCBA presence led to a reduction in apparent density, cells size, and glass transition, delaying the thermal decomposition. The differences observed in the thermal conductivity and flammability test parameters suggest a visible impact of the ash incorporation, thus meeting the fire protection standard UL 94, class HB. Highlighting the need for further optimization, this work presents a practical example of the integration of different wastes derived from the same fermentation process in the formulation of sustainable PUR foams with reduced flammability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.