The Dry Andes region of Argentina and Chile is characterized by a highly developed periglacial environment. In these arid or semi-arid regions, rock glaciers represent one of the main pieces of evidence of mountain creeping permafrost and water reserves in a solid state. However, their distribution, degree of activity, and response to global warming are not yet well understood. In this context, this work aims to show the potential of the Sentinel-1-based interferometric technique (DInSAR) to map active rock glaciers at a regional level. In particular, the paper presents an active rock glacier inventory for the study area, which covers approximately 40,000 km2, ranging from latitude 30°21′S to 33°21′S. A total of 2116 active rock glaciers have been detected, and their elevations show a high correlation with the west-east direction. This result was obtained by using only 16 interferometric pairs. Compared to other remote sensing classification techniques, the interferometric technique offers a means to measure surface displacement (active rock glacier). This results in a reliable classification of the degree of activity compared to other methods, based on geomorphological, geomorphometric, and/or ecological criteria. This work presents evidence of this aspect by comparing the obtained results with existing optical data-based inventories. We conclude that the combination of both types of sensors (radar and optical) is an appropriate procedure for active rock glacier inventories, as both mapping methodologies are complementary.
This paper presents an analysis of the internal structure, hydrogeology and dynamics of a large, complex, multilobate and multiroot rock glacier combining electrical resistivity tomography (ERT), hydrochemical data and differential interferometry synthetic aperture radar (DInSAR). The rock glacier consists of a series of overlapping lobes that represent different advancing stages with different degrees of conservation. The ERT surveys characterize the active layer and the upper part of the permafrost layer, the latter showing a heterogeneous geometry and electrical resistivity values ranging from 7 to 142 kΩm. Hydrochemical data argue for both the existence of different disconnected water flow pathways inside the rock glacier and the remarkable ionic concentrator effect of this landform. The horizontal displacement from October 2014 to April 2017 shows greatest magnitudes in the upper sector of both tongues, reaching speeds of up to 150 cm/year. The active frontal sector shows a displacement rate of 2-4.5 cm/year. This study contributes to knowledge of the material properties of rock glaciers, which are considered to represent important reservoirs/ water resources, and their influence on the distribution of mountain permafrost, hydrology, and dynamics. Finally, to the best of our knowledge, the possible influence of the metal content of the ground on the resistivity values recorded for mountain permafrost is highlighted for the first time.
Abstract. This paper presents a detailed rock glacier inventory used in determining how the various natural parameters 10 affect a mountain periglacial environment. This study was undertaken in a northernmost sector of the central Argentine Andes, in an area stretching between 31°02´and 31°22´S latitude. This is a high and arid subtropical region where permafrost and cryogenic processes are predominant, featuring as well as a large number of rock glaciers and associated periglacial landforms. Rock glaciers inventory was based on geomorphological characterization with optical remote sensing data and field description information. The study region covers 630 km 2 , with 3,25 % of this area showing 402 rock glaciers 15 and protalus rampart features. In total, 172 rock glaciers have been identified, 48 of which are considered active. In such a sector, the protalus rampart range shows the largest landform occurrences, though fossil and inactive rock glaciers are usually larger and are developed over a larger attitudinal distribution. Based on previous studies, we have considered that the study of active rock glaciers is an effective approach to assess the current state of periglacial environment evolution. the annual potential solar radiation show high values but there is not any significant difference between landform and, therefore, it is scarcely influential. The research is carried out over a high mountain area where poor accessibility hindered the chances for obtaining systematic data on weather and environment. A simple and low coast methodology was used to analyse an area where no studies on rock glacier distribution had been made before. This information gains special importance because Argentina has recently instituted a national law for glacial and periglacial environment protection and 30The Cryosphere Discuss.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.