The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.
Recent data indicate that IGF1R/IRS signaling is a potential therapeutic target in BCR-ABL1-negative myeloproliferative neoplasms (MPN); in this pathway, IRS2 is involved in the malignant transformation induced by JAK2 V617F , and upregulation of IGF1R signaling induces the MPN phenotype. NT157, a synthetic compound designed as an IGF1R-IRS1/2 inhibitor, has been shown to induce antineoplastic effects in solid tumors. Herein, we aimed to characterize the molecular and cellular effects of NT157 in JAK2 V617Fpositive MPN cell lines (HEL and SET2) and primary patient hematopoietic cells. In JAK2 V617F cell lines, NT157 decreased cell viability, clonogenicity, and cell proliferation, resulting in increases in apoptosis and cell cycle arrest in the G 2 /M phase (p < 0.05). NT157 treatment inhibited IRS1/2, JAK2/STAT, and NFκB signaling, and it activated the AP-1 complex, downregulated four oncogenes (CCND1, MYB, WT1, and NFKB1), and upregulated three apoptotic-related genes (CDKN1A, FOS, and JUN) (p < 0.05). NT157 induced genotoxic stress in a JAK2/STAT-independent manner. NT157 inhibited erythropoietin-independent colony formation in cells from polycythemia vera patients (p < 0.05). These findings further elucidate the mechanism of NT157 action in a MPN context and suggest that targeting IRS1/2 proteins may represent a promising therapeutic strategy for MPN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.