Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010)(2011) and at high vertical resolution (2013)(2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light-and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.
Abstract. In the Amazonian rain forest, major parts of trees and shrubs are covered by epiphytic cryptogams of great taxonomic variety, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown. As cryptogams are poikilohydric organisms, they are physiologically active only under moist conditions. Thus, information on their water content (WC) as well as temperature and light conditions experienced by them are essential to analyze their impact on local, regional, and even global biogeochemical processes. In this study, we present data on the microclimatic conditions, including water content, temperature, and light conditions experienced by epiphytic bryophytes along a vertical gradient, and combine these with above-canopy climate data collected at the Amazon Tall Tower Observatory (ATTO) in the Amazonian rain forest between October 2014 and December 2016. While the monthly average of above-canopy light intensities revealed only minor fluctuations over the course of the year, the light intensities experienced by the bryophytes varied depending on the location within the canopy, probably caused by individual shading by vegetation. In the understory (1.5 m), monthly average light intensities were similar throughout the year, and individual values were extremely low, remaining below 3 µmol m−2 s−1 photosynthetic photon flux density more than 84 % of the time. Temperatures showed only minor variations throughout the year, with higher values and larger height-dependent differences during the dry season. The indirectly assessed water content of bryophytes varied depending on precipitation, air humidity, dew condensation, and bryophyte type. Whereas bryophytes in the canopy were affected by diel fluctuations of the relative humidity and condensation, those close to the forest floor mainly responded to rainfall patterns. In general, bryophytes growing close to the forest floor were limited by light availability, while those growing in the canopy had to withstand larger variations in microclimatic conditions, especially during the dry season. For further research in this field, these data may be combined with CO2 gas exchange measurements to investigate the role of bryophytes in various biosphere–atmosphere exchange processes, and could be a tool to understand the functioning of the epiphytic community in greater detail.
<p><strong>Abstract.</strong> In the Amazonian rain forest, major parts of trees and shrubs are covered by epiphytic cryptogams of great taxonomic variety, but their relevance in biosphere-atmosphere exchange, climate processes, and nutrient cycling are largely unknown. As cryptogams are poikilohydric organisms, they are physiologically active only under moist conditions. Thus, information on their water content, as well as temperature and light conditions experienced by them are essential to analyzing their impact on local, regional, and even global biogeochemical processes.</p> <p>In this study, we present data on the microclimatic and ecophysiological conditions of epiphytic bryo-phytes along a vertical gradient and combine these with mesoclimate data collected at the Amazon Tall Tower Observatory (ATTO) in the Amazonian rain forest between October 2014 and December 2016. While the monthly average mesoclimatic ambient light intensities above the canopy revealed only minor variations, the light intensities incident on the bryophytes showed different patterns at different heights, probably depending on individual shading by vegetation. At 1.5&thinsp;m height, monthly average light intensities were similar throughout the year and individual values were extremely low, exceeding 5&thinsp;µmol&thinsp;m<sup>&minus;2</sup>&thinsp;s<sup>&minus;1</sup> pho-tosynthetic photon flux density only during 8&thinsp;% of the time. Temperatures showed only minor variations throughout the year with higher values and larger height-dependent differences during the dry season. Water contents of bryophytes varied depending on precipitation and air humidity. Whereas bryophytes at higher levels were affected by frequent wetting and drying events, those close to the forest floor remained wet over longer time spans during the wet seasons. Based on estimates of the potential duration of net pho-tosynthesis and dark respiration, our data suggest that water contents are decisive for overall physiological activity, and light intensities determine whether net photosynthesis or dark respiration occurs, whereas temperature variations are only of minor relevance in this environment. In general, bryophytes growing close to the forest floor are limited by light availability, while those growing in the canopy must withstand larger variations in microclimatic conditions, especially in the dry season. Measurements of CO<sub>2</sub> gas ex-change are essential to elucidate their physiological activity patterns in greater detail.</p>
Amazon forests are being degraded by myriad anthropogenic disturbances, altering ecosystem and climate function. We analyzed the effects of a range of land‐use and climate‐change disturbances on fine‐scale canopy structure using a large database of profiling canopy lidar collected from disturbed and mature Amazon forest plots. At most of the disturbed sites, surveys were conducted 10–30 years after disturbance, with many exhibiting signs of recovery. Structural impacts differed in magnitude more than in character among disturbance types, producing a gradient of impacts. Structural changes were highly coordinated in a manner consistent across disturbance types, indicating commonalities in regeneration pathways. At the most severely affected site – burned igapó (seasonally flooded forest) – no signs of canopy regeneration were observed, indicating a sustained alteration of microclimates and consequently greater vulnerability to transitioning to a more open‐canopy, savanna‐like state. Notably, disturbances rarely shifted forests beyond the natural background of structural variation within mature plots, highlighting the similarities between anthropogenic and natural disturbance regimes, and indicating a degree of resilience among Amazon forests. Studying diverse disturbance types within an integrated analytical framework builds capacity to predict the risk of degradation‐driven forest transitions.
Cryptogamic organisms such as bryophytes and lichens cover most surfaces within tropical forests, yet their impact on the emission of biogenic volatile organic compounds is unknown. These compounds can strongly influence atmospheric oxidant levels as well as secondary organic aerosol concentrations, and forest canopy leaves have been considered the dominant source of these emissions. Here we present cuvette flux measurements, made in the Amazon rainforest between 2016–2018, and show that common bryophytes emit large quantities of highly reactive sesquiterpenoids and that widespread lichens strongly uptake atmospheric oxidation products. A spatial upscaling approach revealed that cryptogamic organisms emit sesquiterpenoids in quantities comparable to current canopy attributed estimates, and take up atmospheric oxidation products at rates comparable to hydroxyl radical chemistry. We conclude that cryptogamic organisms play an important and hitherto overlooked role in atmospheric chemistry above and within tropical rainforests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.